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Abstract

Causality analysis automates attack forensic and facilitates
behavioral detection by associating causally related but tem-
porally distant system events. Despite its proven usefulness,
the analysis suffers from the innate big data challenge to store
and process a colossal amount of system events that are con-
stantly collected from hundreds of thousands of end-hosts in a
realistic network. In addition, the effectiveness of the analysis
to discover security breaches relies on the assumption that
comprehensive historical events over a long span are stored.
Hence, it is imminent to address the scalability issue in or-
der to make causality analysis practical and applicable to the
enterprise-level environment.

In this work, we present SEAL, a novel data compression ap-
proach for causality analysis. Based on information-theoretic
observations on system event data, our approach achieves
lossless compression and supports near real-time retrieval of
historic events. In the compression step, the causality graph
induced by the system logs is investigated, and abundant edge
reduction potentials are explored. In the query step, for maxi-
mal speed, decompression is opportunistically executed. Ex-
periments on two real-world datasets show that SEAL offers
2.63x and 12.94x data size reduction, respectively. Besides,
89% of the queries are faster on the compressed dataset than
the uncompressed one, and SEAL returns exactly the same
query results as the uncompressed data.

1 Introduction

System logs constitute a critical foundation for enterprise se-
curity. The latest computer systems have become more and
more complex and interconnected, and attacker techniques
have advanced to take advantage and nullify the conventional
security solutions which are based on static artifacts. As a
result, the security defense has turned more to pervasive sys-
tem event collection in building effective security measures.
Research has extensively explored security solutions using
system logs. Causality analysis in the log setting (or attack

provenance), as defined in [83], is one such direction that
reconstructs information flow by associating interdependent
system events and operations. For any suspicious events, the
analysis automatically traces back to the initial penetration
(root-cause diagnosis), or measures the amount of the impact
by enumerating the system resources affected by the attacker
(attack ramification). Encouragingly, the security solutions
based on pervasive system monitoring and causality analysis
no longer remain as a research prototype. Many proposed
ideas have actualized as commercial solutions [8, 14, 22].

However, due to their data-dependent nature, the effective-
ness of the above security solutions is heavily constrained
by the system’s data storage and processing capability. On
one hand, keeping large volumes of comprehensive historical
system events is essential, as the security breach targeting an
enterprise tends to stay at the network over a long span: an
industry report by TrustWave [78] shows, on average, an intru-
sion prolongs over 188 days before the detection. On the other
hand, the size of a typical enterprise network and the amount
of system logs each host generates could put high pressure
on the security solutions. For instance, our industrial partner
reported that on average 50 GB amount of logs are produced
from a group of 100 hosts daily, and they can only sustain
at most three months of data despite the inexpensive storage
cost. There is a compelling need for a solution that can scale
storage and processing capacity to meet the enterprise-level
requirement.

Lossless compression versus lossy reduction. Compres-
sion techniques [79] come in handy for improving the stor-
age efficiency of causality analysis. Existing approaches
[37,45,77,83] tend to carry out lossy reduction, which re-
moves logs matching pre-defined patterns, leading to unavoid-
able information loss. Although they showed that the validity
of causality analysis is preserved on samples of investiga-
tion tasks, there is no guarantee that every task will derive
the right outcome. In Section 2.3, we show examples about
when they would introduce false positives/negatives. In ad-
dition, the accuracy of other applications such as behavioral
detection [30, 53] and machine-learning based anomaly detec-



tion [10,19,47,62,63,84] would be tampered, when they use
the same log data. Alternatively, lossless compression [79]
allows any information to be restored and thus causality anal-
ysis is preserved. Though the standard tools like Gzip [18] are
expected to achieve a high compression rate, they are not ap-
plicable to our problem, because high computation overhead
of decompression will be incurred when running causality
analysis.

In this work, we challenge the common belief that lossless
compression is inefficient for causality analysis, by devel-
oping SEAL (Storage-Efficient Analysis on enterprise Logs)
under information-theoretic principles. Compared to the pre-
vious approaches, logs under a wider range of patterns can
be compressed in a lossless fashion without the need for care-
fully examining conditions such as traceability equivalence
or dependence preservation, while the validity and efficiency
of any investigation task of causality analysis are preserved.

Contributions. The main contributions of this paper are as
follows.

e We develop a framework of query-friendly compression
(QFC) specialized for causality analysis. In this framework,
the dependency graph is induced from the logs, and lossless
compression is applied to the structure (vertices and edges)
and then to the edge properties, or attributes (e.g., timestamp).
QFC ensures every query is answered accurately, while the
query efficiency is guaranteed as the majority of operations
required by queries are done directly on the compressed data.

e We design compression and querying algorithms accord-
ing to the definition of QFC. For graph structures, we define
merge patterns to be subgraphs whose edges are combined
into one new edge. For edge properties, delta coding [59]
and Golomb codes [28] are applied to exploit temporal local-
ity, meaning that consecutively collected logs have similar
timestamps. To return answers to a causality query, the pro-
posed method obviates decompression unless the relationship
between the timestamps of a compressed edge and the time
range of the query cannot be determined.

e A compression ratio estimation algorithm is provided
to facilitate the decision of using the compressed or uncom-
pressed format for a given dataset. We show that the com-
pression ratio can be determined by the average degree of
the dependency graph. Our algorithm estimates the average
degree by performing random walk on the dependency graph
with added self-loops, and randomly restarting another walk
during the process. If the estimated compression ratio of a
given dataset is smaller than a specified threshold, compres-
sion can be skipped.

e The above algorithms are implemented in SEAL, which
consists of the compression system that is applied to online
system logs and the querying system that serves causality
analytics. Due to the large amount of merge patterns in the
dependency graphs, SEAL can compress online log data into a
significantly smaller volume. In addition, the query-friendly
design reduces the required decompression operations. We

evaluate SEAL on system logs from 95 hosts provided by
our industrial partner. The experiment results demonstrate an
average of 9.81x event reduction, 2.63x storage size reduction.
Besides, 89% of the queries are faster on the compressed
dataset than the uncompressed one. We also evaluate SEAL on
DARPA TC dataset [16] and achieved 12.94x size reduction.
Causality analysis to investigate attacked entities is shown to
return accurate results with our compression method.

2 Background

We first describe the concepts of system logs and causality
analysis. Then, we review the existing works based on lossy
reduction and compare SEAL with them.

2.1 System Logs

To transparently monitor the end-host activities in a confined
network, end-point detection and response (EDR) has become
a mainstream security solution [35]. A typical EDR system
deploys data collection sensors to collect the major system ac-
tivities such as file, process and network related events, as well
as events with high security relevancy (e.g., login attempts,
privilege escalation). Sensors then stream the collected sys-
tem events to a centralized data back-end. Data collection at
end-host hinges on different operating systems’ (OS) kernel-
level supports for system call level monitoring [11,55,69].

In this study, we obtained a dataset from the real-world cor-
porate environment. Data sources are the system logs gener-
ated by kernel audit [69] of Linux hosts and Event Monitoring
for Windows (ETW) [55] of Windows hosts respectively. The
system events belong to three different categories: (i) process
accesses (reads or write) files (P2F), (ii) process connects to or
accepts network sockets (P2N), and (iii) process creates other
processes, or exits it executions. These system events cap-
tured from each end-host are transferred to the back-end and
represented in a graph data structure [42] where nodes repre-
sent system resources (i.e., process, file, and network socket)
and edges represent interactions among nodes. Our system
labels edges with attributes specific to system operations. For
instance, amounts of data transferred for file and network
operations, command-line arguments for process creations.
The dataset comprises of various workloads that range from
simple administrative tasks to heavy-weight development and
data analysis tasks and also includes end-user desktops and
laptops as well as infra-structural servers.

Among the three categories of system events (file, network,
and process) in the dataset, file operations account for the
majority, taking over 90% portions, therefore become the
primary target for SEAL compression. In particular, the file
operation like create, open, read, write or delete is logged in
each file event, alongside its owner process, host ID, file path,
and timestamp. All file events have been properly anonymized



(no user identifiable information exists in any field of the
table) to address privacy concerns.

Despite its improved visibility, data collection for in-host
system activity results in a prohibitive amount of processing
and storage pressures, compared to other network-level mon-
itoring appliances [63]. For instance, our data collection de-
ployment on average reported approximately 50 GB amount
of logs for a group of 100 hosts daily. Given that a typical
enterprise easily exceeds hundreds of thousands of hosts for
its network, it is imminent to address the scalability issues in
order to make causality analysis practical and applicable to a
realistic network.

2.2 Causality Analysis in the Log Setting

After the end-point logs are gathered and reported to the data
processing back-end, different applications are run atop to pro-
duce insights to security operators, such as machine-learning
based threat detection [10], database queries [23-25] and
causality analysis (or data provenance) [83]. Although our
approach mainly focuses on the causality analysis, which re-
quires high fidelity on its input data, it also benefits other
analyses as our approach reduces data storage and computa-
tional costs.

To its core, causality analysis automates the data analysis
and forensic tasks by correlating data dependency among
system events. Using the restored causality, security opera-
tors accelerate root cause analysis of security incident and
attack ramification. The causality analysis is considered to be
a de facto standard tool for investigating long-running, multi-
stage attacks, such as Advanced Persistent Threat (APT) cam-
paigns [58]. For any suspicious events reported by users or
third-part detection tools, the operator can issue a query to
investigate causally related activities. The causality analysis
then consults to its data back-end to restore the dependencies
within the specified scope. The accuracy of causality analysis
relies on the completeness of data collection, and the analysis
response time and usability depend on the data access time.
In Section 3.1, we demonstrate a causality analysis where our
compression approach addresses the scalability issues without
deteriorating accuracy and usability.

2.3 Comparison with Lossy Reduction

To reduce the storage overhead in supporting causality anal-
ysis, prior works advocated lossy reduction [37,45,77,83],
which removes logs of certain patterns before they are stored
by the back-end server. Here we show the reduction rules of
the prior works and compare their scope to SEAL.

LogGC [45] removes temporary files from the collected
data that are deemed not affecting causality analysis. Node-
Merge [77] merges the read-only events (Read events in our
data) during the process initialization. The approach proposed
by Xu et al. [83] removes repeated edges between two objects
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Figure 1: Comparison of our method SEAL to LogGC [45],
NodeMerge [77], methods by Xu et al. [83] and Hossain
et al. [37]. In NodeMerge (the second graph in the middle
column), the node T represents a new node. In SEAL (the right
column), the blue solid circles represent new nodes.

on the same host (e.g., multiple read events between a file and
a process) when a condition termed trackability equivalence
is satisfied. Hossain et al. [37] relaxes the condition of [83]
such that more repeated events (e.g., repeated events cross
hosts) can be pruned, which tends to be more conservative to
maintain graph trackability.

SEAL is more general compared to any of the existing works.
Our lossless compression schema is agnostic to file types and
is therefore complementary to LogGC. SEAL also processes
Write and Execute events, compared to NodeMerge, and
therefore covers the whole life-cycle of a process. Compared
to Xu et al. and Hossain et al., SEAL is more aggressive, e.g.,
merging not only the edges repeated between a pair of nodes.
Figure 1 also illustrates the differences. In Section 5, we
compare the overall reduction rate, with Hossain et al., which
is the most recent work.

In terms of data fidelity, none of the prior works can guar-
antee false negative/positive would not occur during attack
investigation. For LogGC, if the removed temporary files
are related to network sockets, data exfiltration done by the
attacker might be missed. For NodeMerge, the authors de-
scribed a potential evasion method: the attacker can keep
the malware waiting for a long time before the actual at-
tack, so that the malware might be considered as a read-only
file as determined by their threshold and break the causality
dependencies (see [77] Section 10.4). PCAR of Xu et al. in-
troduces false connectivity in two (out of ten) investigation
tasks (see [83] Section 4.3). Similarly, false negatives could
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Figure 2: A dependency graph (see Section 3.1) under Full
Dependency (FD) preservation reduction [37], where one
edge is removed. The timestamp of each event is labeled on
the edge. When querying for nodes dependent on Node A
after time 15, the reduced dataset returns the empty set but
the original dataset returns B,C, D. From the example we see
that FD can return less number of nodes for causality analysis
under time constraints.

be introduced to the system of Hossain et al. when the query
has a time constraint, and we provide an example in Figure 2.

On the other hand, as SEAL ensures the completeness of
logs, it can mitigate any of the above issues.

3 Log Compression

SEAL aims to compress the dependency graph constructed
from system logs, as illustrated in Figure 3, while supporting
the causality analysis without sacrificing query efficiency and
analysis accuracy. If every analysis task results in decom-
pressing a large portion of data, the goal of query efficiency
will not be achieved. If compression causes significant in-
formation loss, the forensic analysis might lead to incorrect
conclusion. Therefore, we design SEAL to compress the ver-
tices and edges of a large amount of redundant information,
and the compressed sets of edges are chosen such that we can
restrain the frequency or overhead of decompression.

In this section, we first describe the dataset to be processed
and the query to be run by an analyst. Then, we introduce the
concept Query-friendly Compression (QFC) and show how it
can be applied to system logs. Moreover, we introduce the
compression algorithms that can be applied on the logs and
compare them with the prior research. Finally, we propose an
algorithm to estimate the compression ratio based on which
one can determine when to compress.

3.1 Dataset and Event Query

Table | shows the primary dataset (FileEvent) we need to
compress and the main fields. The start and end timestamp of
each event are logged by starttime and endtime. An event
links a source object and a destination object, distinguished
by srcid (Source ID) and dstid (Destination ID). The ob-

Field Exemplar Value
starttime 1562734588971
endtime 1562734588985

srcid 15

dstid 27
agentid -582777938

accessright Execute

Table 1: On example entry of FileEvent.

New Node | Represented Nodes
a A, B
b B, C
c G, H

Table 2: Node map for the example in Figure 3.

ject associated with each event can be file or process. All
events occur within a host, denoted by agentid, and there is
no cross-host event. There are three types of operations as-
sociated with an event, including Execute, Read and Write,
recorded by accessright. To notice, the properties of ob-
jects, like the filenames and paths, are stored in other tables.
But because the other tables’ volume is small, we do not
process them specifically.

Causality analysis on FileEvent. We assume that a de-
pendency graph G = (V,E) can be derived from FileEvent,
in which the vertices (V') are the objects and the directed edges
(E) are the events. Causality analysis uncovers the causality
dependency of edges, and we define its computation paradigm
below, in a way similar to the definition from Wu et al. [83].

Definition 1 (Causality dependency). Given two adjacent di-
rected edges e; = (u,v) and e, = (v,w), there is a causality
dependency between them, denoted by e; — e», if and only
if f.(e1) < fe(e2), where f, extracts starttime of an event.
Dependency is also defined for non-adjacent edges by transi-
tivity: if e; — e and ey — e3, then e; — e3.

To conduct causality analysis, the analyst issues a query
specifying the constraints to find the POI (Point-of-Interest)
vertex v. The set of edges directly linked to v (termed E,)
and the ones with causality dependency to E, will be re-
turned. To notice, both forward-tracking (i.e., finding e,y
such that e — ey,,4) and back-tracking (i.e., finding ep such
that epor — €) can be supported, and in this work we focus on
back-tracking [42], which is a more popular choice. Usually,
newly discovered vertices/edges are returned to the analyst
in an iterative way. The process will terminate when no more
vertices/edges are discovered or the maximum depth specified
by the analyst has been reached. In each iteration, the analyst
can refine the query constraints to reduce the analysis scope.

Figure 3 (left) shows an example of a dependency graph
generated from FileEvent. There are three file nodes
(A, B and C) and five process nodes (D, E, F, G, H). The
edge is formatted as [starttime, endtime, srcid, dstid,
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Figure 3: An example of dependency graph (left) and its compressed version after applying SEAL (right). Edges are merged if and
only if they share the same destination node. To facilitate causality queries, the smallest starttime and the largest endtime are
defined as the first two fields in the new edge. The ellipsis mark represents the time for all the compressed edges. For example,

the edge between a and D is [25, 55, a,D, Read, (25,55),

(35,45);

(25,45) 1. We use comma to separate repeated edges and

use semicolon to separate different edges. Therefore, combining with the node map in Table 2, we can see the compression is
lossless. The edge properties will be further compressed as described in Section 3.4.

accessright]. Given a back-tracking query about POI vertex
Fand starttime rangedin [45, 100], three causal events will
be reported: [70, 80, E, F, Execute], [65, 85, E, F, Execute],
and [50, 60, B, E, Read]. The other edges do not satisfy the
definition of causality analysis.

3.2 Query-friendly Compression

While compression is a well-developed area, with numerous
methods available, many of them will introduce prominent
overhead to causality analysis, as they require decompres-
sion every time a vertex/edge is examined. In this work, we
adopt a concept from the data-mining community, termed
Query-friendly Compression (QFC) [20,52,54], and develop
compression techniques around it. In essence, the techniques
under QFC should compress graphs “in a way that they still can
be queried efficiently without decompression” [54]. For exam-
ple, 4 types of queries can be supported with QFC algorithms
of [20], including neighborhood queries, reachability queries,
path queries, and graph pattern queries. Causality analysis can
be considered as an iterative version of neighborhood queries.

Yet, the QFC schema of prior works cannot be directly ap-
plied to our setting. Firstly, some mechanisms require signifi-
cant change on the data structures [54]. For our deployment,
regular SQL queries have to be supported as well so the data
format after compression has to adhere to the database schema.
Secondly, the edges in all prior works have no associated prop-
erties [20,52, 54], therefore only merging vertices is sufficient
to fulfill their goal. While we can follow the same approach
and keep the edge properties concatenated without compres-
sion, such a design is not optimal. Moreover, the queries on
dependency graphs depend on not only the connectivity of the

nodes but also the edge properties like starttime, leading
to the challenge of retrieving the answers.

Therefore, we modify QFC according to causality analysis,
which enforces “decompression-free” compression on graph
structure and “query-able” compression on edge properties.
Below we define the adjusted QFC based on the definition
from [20].

Definition 2 (Query-friendly Compression). Assume a de-
pendency graph G = (V,E) is to be compressed. Let the
class of causality analysis queries be Q, and let Q(G) be
the answer to the query Q € Q. A QFC mechanism is a triple
< R,F,P >, where R is a compression method, F : Q — Q
re-writes Q to accommodate the compressed data, and P is
a post-processing function. Compression can be expressed
as R(G) = R,(R(G)), where R, compresses the structures
(vertices and edges), and R, compresses the edge properties
or fields. Denote by G, = R(G) = (V,,E,) the graph after
compression, such that |E,| < |E|. QFC requires that for any
query 0 € Q,

e O(G) = P(Q'(G,)), where Q' = F(Q) is the query on
the compressed graph, and P(Q'(G,)) is the result after post-
processing the query answer on G,.

o With only R; applied, any algorithm for evaluating Q can
be directly used to compute Q'(G,) without decompression.

e When both R; and R, are applied, decompression is
needed only when the relationship between the timestamps
of a compressed edge e € E, and the time range of the query
cannot be determined.

Next, we describe our choices of Ry and R, in Section 3.3
and Section 3.4. The query transformation F and the post-
processing P are investigated in Section 3.5. Figure 3 (right)
overviews the graph compressed with SEAL.



3.3 Compression on Graph Structure

We design the function R, such that multiple edges (from one
pair of nodes or multiple pairs) can be reduced into a single
edge. In particular, our algorithm finds sets of edges satisfying
a certain merge pattern and combines all edges in the set.
By examining the fields of FileEvent, one expects a higher
compression ratio if edges with common fields are merged.
Moreover, edges within proximity can be merged without
sacrificing causality tracking performance. As illustrated in
Figure 3, we choose the merge pattern to be the set of all
incoming edges of any node v € V, which will share properties
such as dstidor agentid. Correspondingly, a new node
is added in the new graph G,, representing the combination
of all the parent nodes of v, if the number of parent nodes is
more than 1.

We give an example in Figure 3. The new node a is gen-
erated to correspond to two individual nodes {A,B}, and
the new edge [25, 55, a, D, Read, (25, 55), (35,
45); (25, 45)] is generated to correspond to three in-
dividual edges {[25, 55, A, D, Read], [35, 45, A, D,
Read], [25, 45, B, D, Read]}. Similarly, we merge the
two incoming edges of node B, merge the two incoming edges
of node E, and create new nodes c, b, respectively. We also
merge the two repeated edges between nodes E, F, but no
new node needs to be created for them. Individual edges are
removed in the compressed graph G, if they are merged into
a new edge. However, as can be seen in Figure 3, individual
nodes should not be removed. For example, even if the in-
dividual node B is included in the new node a, it cannot be
removed because of its own incoming edges. The new nodes
are recorded in a node map, shown in Table 2.

Our algorithm for R, is shown in Algorithm 1. It takes all
the events as input, and creates two hash maps: (i) NodeMap,
child node with all its parent nodes, and (ii) EdgeMap, a
pair of nodes with all its corresponding edges. Then for each
child node v € V, all its parent nodes and the corresponding
incoming edges are identified and merged. Meanwhile, the
node map as in Table 2 is also updated. The time complexity
of this algorithm is linear in the size of the graph, namely,
O(|V|+ |E|). When responding to queries, decompression is
selectively applied to restore the provenance, with the help of
NodeMap and EdgeMap.

3.4 Compression on Edge Properties

For all the properties or fields for a merged edge, they should
be combined and compressed due to the redundant informa-
tion, which is the focus of the compression function R,. We
propose delta coding for merged timestamp sequence, and
Golomb code for the initial value in the sequence.

Delta coding. Delta coding represents a sequence of val-
ues with the differences (or delta). It has been used in up-
dating webpages, copying files online backup, code version

Algorithm 1 Graph structure compression.

Input: a set of edges E.
Output: a set of new edges E’, a node map NodeMap.
1: NodeMap < 0 > hash map (key = a node, value =
parent nodes)
2: EdgeMap < 0 > hash map (key = a pair of nodes, value
= edges)
3. for e = (u,v) € E do
4 NodeMap.put(v, u)
5 EdgeMaps.put((u,v),e)
6: end for
7
8
9

D E' 0
: for v e NodeMap keys do
: =0 > a new edge
10 U < NodeMap.get(v)
11: for u c U do
12: e «+ ¢ U{EdgeMap.get((u,v))}
13: end for
14: E'+— EU{¢}
15: end for

1562734588984

1562734588980 —>

1562734588990

e

[1562734588971; 9; -9, 13; 6]

Delta Encoding

[1562734588980,1562734588971, — LQr - 6
1562734588984,1562734588990] (1662734588971, 9; -9, 13: 61

Figure 4: Delta coding for starttime. The first number in
the combined time vector is the minimum time among the
edges.

control and etc. [59]. We apply delta coding on timestamp
fields (starttime, endtime) , as they usually share a long
prefix. For instance, as shown in Figure 4, the starttime
field is a long integer, and merged individual edges have val-
ues like 1562734588980, 1562734588971, 1562734588984,
1562734588990. Those values usually share the same prefix
as the events to be compressed are often collected in a small
time window, hence delta coding can result in a compact
representation.

As shown in Figure 4, assume a node x has d incoming
edges and p parent nodes, 1 < p <d. Let the starttime of
the j-thedge be t},,,,, 1 < j <d. We first construct a sequence

_ 10 . 1 . 2 3. . d .
tstart - [[start > tSturt > t.\'turt ’ tslart > e tstarl ]

where 19, = minj < j<4(t},,). Here comma is used to sepa-
rate different edges from the same parent node, and semicolon
separates different parent nodes. The colon at the end is used
to separate the timestamp fields. For endt ime, we choose the
initial entry ¢° to be the maximum among the edges. Then we

concatenate both fields into one sequence.



Then, we compute the delta for every consecutlve pair of
timestamps: for 1 < j <d, Amm = than — Y,a,, The resulting
coded timestamp of the merged edge is:

0 . 1 2 4 d
[tstart’ Astart’ Asz‘art7 start> Astart’ ) Astart ]

and delta coding is also applied to the other timestamp fields.
The time complexity of delta coding is O(d) where d is the
number of edges.

To conform to the uncompressed FileEvent format, the
19, and tgnd are stored in the starttime and endtime field
of the new edge e“ respectively, and the generated delta-coded

starttime and endtime are stored in a new delta field.

Golomb coding. Delta coding can compress all the elements
of the combined time sequence except ° which is still a long
integer. Moreover, if an individual edge is not merged, its
timestamps are also long integers. We choose to employ
Golomb coding [28] to compress long integers to relatively
small integers. Alternatively, a more aggressive approach is
to use delta coding to compress ¢ of different merged events,
but the database index will be updated [13] and the query cost
will be high. One favorable property of Golomb coding is that
the relative order of the numbers is not changed, which fits
well with the requirements of QFC. That is, if # > ¢/, then we
have the Golomb coded variable Gol(¢) > Gol(t').

Golomb code uses a parameter M to divide an input datum
N into two parts (quotient g and reminder ) by

N-1
q=|— L r=N-gM-1 (M
Under the standard Golomb coding schema, the quotient
q is then coded under unary coding, and the reminder r is
coded under truncated binary encoding to guarantee that the
value after coding (called codeword) is a prefix code. In our
case, however, the truncated binary encoding is not neces-
sary because the codewords are separated by different en-
tries automatically. As such we use a simpler mechanism,
binary coding, for . The coded data is then calculated by
concatenating p and r. For instance, given a long integer
1562734588980 (64 bits) and a M = 1562700000000, the bi-
nary form of p and r after coding will be 10 (2 bits) and
10000011111100100100110100 (26 bits). In this example,

32 bits are sufficient to store the Golomb codeword.

3.5 Query and Decompression

As defined by QFC, decompression is only necessary when
the relation between the time range specified in the query and
in the edge cannot be determined. If there are no intersections
of these two ranges, decompression can be skipped. In our
back-tracking queries, the above property holds for two rea-
sons. First, due to the order preservation property of Golomb
coding, it is unnecessary to decode all Golomb codes in the
database to answer a query with a timestamp constraint. The

specified timestamp can be simply encoded by Golomb code,
and used as the new constraint issued to the database. Sec-
ond, the minimum starttime ¢, is recorded in a merged
edge. Hence, if we back-track for events whose starttime
is smaller than some given fyery, then all individual edges of
an combined edge with 1, > 7,y Will be rejected. There-
fore, the database does not need to decompress and can safely
reject this combined edge.

Here we use the example shown in Figure 3 to demon-
strate how the query and decompression work. Assume a
query tries to initiate back-tracking on E to find the prior
causal events whose starttime is less than #ge,, = 65. First,
tquery Will be Golomb coded into Gol(65). And the database
needs to find events such that Gol(t%,,,) < Gol(65) and the
destination node is E. For the merged event [50, 80, b, E,
Read], its 19, = 50 value is stored as Gol(50). By order
preservation of Golomb code, Gol(50) < Gol(65). Thus this
merged event will be identified. Second, we decompress this
merged event for further inspection. We extract starttime
Gol(tgm) Gol(50) and Golomb decoding is applied to ob-

tain 9, = 50. Then we recover the timestamp sequence tgq¢

by calculating tsmr, = tmm —|—Amm, j > 1. In this example,
th . =50,t2 ., = 70. Comparing the individual timestamps
now is feasible. It will be found that only the first individual
edge is a valid answer. The final step is to find the individual
nodes corresponding to the valid edges from the node map
in Table 2. After that, the result [50, 60, B, E, Read]is
returned.

It can be seen that if 74er, = 30, all incoming edges of E
can be rejected without Golomb or delta-code decompression
(fquery still needs to be Golomb encoded before issuing the

query).

3.6 Compression Ratio Estimation

Applying compression to the log data may be desirable only
if the compression ratio is higher than a threshold. As a result,
it is important to obtain the compression ratio or its estimate
before compression. While a full scan of the causality graph
gives a precise compression ratio, the overhead is significant.
As a result, we develop an algorithm to estimate the compres-
sion ratio. To that end, we show that this estimation is reduced
to obtaining dgy,, the average degree of the undirected version
of the causality graph (Appendix A). A degree estimator is
developed with a sample size only depending on the required
accuracy rather than on the number of nodes or the number
of edges. As described in Section 4, we implement SEAL for
online compression, this algorithm is applied to chunks of
data sequentially.

Compression ratio estimation. Let G,,4irecreq denote the
undirected graph which is identical to the dependency graph
except that edge directions are removed. Let d,,, be its aver-
age node degree. From Appendix A, we find that the compres-
sion ratio is an explicit function of d,,. The compression ratio



estimation reduces to estimating the average degree. To min-
imize the data access and query time during estimation, we
present an average degree estimation algorithm that samples
nodes in an undirected graph H based on random walk (see
Algorithm 2). The algorithm can be applied to H = Gypgirected
and outputs dgy. In the following, we use the notation dy for
the average degree of H, and d the estimated average degree.
For any vertex v of H, denote by d, its degree.

One way to estimate the average degree is to uniformly
sample nodes in H and get their degrees, and obtain the av-
erage of the sampled degrees [21]. The estimator from the
sample set S is:

ci: Zvesdv _ Zvede.
‘S| ZVGS 1

This method can be improved when we also obtain a random
neighbor of each sampled nodes [27]. The required number of
samples (sample complexity) is O(+/n) to obtain a constant-
factor estimation, where » is the number of nodes. Another
way is to sample nodes according to the node degree, and use
collisions in the samples to obtain the estimate [41], where
the required sample complexity is Q(+/n). Our algorithm is
inspired by the *Smooth’ algorithm of [17], where a node v
is sampled proportional to its degree plus a constant, d, + c,
where the constant ¢ = ody is a coarse estimate of the average
degree with a multiplicative gap o. The coarse estimation ¢
can be obtained from history or a very small subgraph in our
problem. The resultant sample complexity is no more than
max (0, é) E% log %, and the average degree estimate d satisfies

)

Pr((l —de)dy <d < (1+4€)dyBig) >1-8, (3)

forall0 <e<0.5,0<d<1,00>0.

In large graphs, it is hard to sample nodes in the entire
graph according to some distribution as we do not know the
number of nodes and the node degrees. To overcome such
difficulty, the Smooth algorithm can be modified such that the
sampled nodes are obtained by random walk [17]. However,
it makes some assumptions that do not readily fit the depen-
dency graph problem: (i) The graph needs to be irreducible
and aperiodic. However, the dependency graph naturally con-
tains disconnected components. (ii) The sample complexity
needs to be high enough to pass the mixing time and approach
the steady-state distribution, which varies depending on the
structure of the graph.

To overcome these issues, two techniques are used in Al-
gorithm 2. First, random walk with escaping [7] jumps to a
random new node with probability p ., and stays on the ran-
dom walk path with probability 1 — p ., (see Line 4). There-
fore, we can reach different components of the graph. Second,
thinning [41] takes one sample every 6 samples as in Line
7. We obtain 0 groups of thinned samples. If the samples are
indexed by 0, 1,2, ..., then in our algorithm the j-th group, de-
noted by §;, contains samples indexed by j, j+6, j+26,...,

for 0 < j < 0— 1. Each group produces its own estimate (Line
13), and the final estimate is the average of these groups (Line
14). Since the sample distribution is not uniform, we can-
not directly use the estimator of Equation (2). The sampled
degrees need to be re-weighted using the Hansen-Hurwitz
technique [32] to correct the bias towards the high degree
nodes, corresponding to the term d,, + ¢ in the numerator and
the denominator of Line 13. Note that due to the difficulty to
sample a node from the entire graph, the sample distribution
is not specified in Lines 2 and 9.

Algorithm 2 Average degree estimation.

Input: undirected graph H, sample size r, coarse aver-
age degree estimator c, thinning parameter 6, jumping
probability pjump

Output: average degree estimator d

1: §;<0,j=0,1,...,6 -1

2: Randomly sample a node v, of H

3: fori=0tor—1do

4: rnd ~ Bernoulli(p jump)

5: if rnd = 0 then

6: Uniformly sample a neighbor v of v, assuming
Vpre also has ¢ added self loops

7: Si mode < Si modGU{V}

8: else

: Randomly sample a node v of H

10: end if

11: Vpre <=V

12: end f%r o/ )
* ves; dy v .

13: dj = m,]:OJ,...,G—I

1 d=3x00d;

4 Architecture

Design rationale. Figure 5 shows the architecture of SEAL
and how it is integrated into the log ingestion and analysis
pipeline. SEAL resembles the design [77] at the very high
level. In [77], the compression system mainly includes three
elements: computing components, caches, and the database.
In this work, we redesign those elements according to our
algorithm for both the compression system and the query
system. The compression system receives online data streams
of system events, encodes the data, and saves them into the
database. The query system takes a query, applies the query
transformation and recovers the result with post-processing,
and returns the result. The information flow follows closely
the definition of QFC in Section 3.2 and includes the structure
and property compression Ry, R,,, the query transformation F,
and the post-processing P, which are explained in details in
Sections 3.3 — 3.5.

Due to the current monitoring system structure of our indus-



trial collaborator, SEAL is solely deployed at the server-side by
the data aggregator. Note that, alternatively, one can choose
to compress the data at the host end before sending them to
the data aggregator. Since there are no cross-host events in
FileEvent, the compression ratio will be identical for both
choices.

Online compression. While offline compression can achieve
an optimized compression ratio with full visibility to the data,
it will add a long waiting time before a query can be processed.
Given that causality analysis could be requested any time of
the day, offline compression is not a viable option. As such,
we choose to apply online compression.

The online compression system is built by the following
main components: (i) The optional compression ratio esti-
mator. If the estimated ratio as described in Section 3.6 is
more than the given threshold, data is passed through the fol-
lowing components. Otherwise, data is directly stored in the
database. (ii) Caching. It organizes and puts the most recent
data steam into a cache. When the cache is filled, the data
will be compressed. The cache size is configurable, called
chunk size. (iii) Graph structure compression. It merges and
encodes all the edges that satisfy the edge merge pattern as in
Section 3.3. It also generates the node mapping between the
individual nodes and the new nodes, shown in Table 2. (iv)
Edge property compression. It encodes each event timestamp
entry using delta coding and Golomb codes as in Section 3.4.

Next, we remark on some design choices. The configurable
chunk size provides a tradeoff between the memory cost and
the compression ratio. The larger the chunk size, the more
edges can be combined. We found in our experiments as in
Section 5 that 134 MB per host is a large enough chunk size
offering sufficiently high compression capability.

Query. The query system comprises three main components.
(i) Query transformation. Given a query Q, SEAL transforms
it into another query Q' that the compressed database can pro-
cess. In particular, it needs to transform the queried timestamp
and the srcid constraints, if there are any. The timestamp con-
straint is encoded into a Golomb codeword, which is used as
the new constraint as in Section 3.5. If a srcid is given, then
this individual node is mapped to all the corresponding new
nodes using the node map. (ii) Querying. The transformed
query Q' is issued to the database and the answer is obtained.
(iii) Post-processing. The combined edges are decompressed
from delta codes, the timestamp constraint is checked, the
merged node is mapped to individual nodes, and the valid
individual edges are returned as described in Section 3.5.

Note that, in the query transformation component, if dstid
is a query constraint, then no node mapping is required since
only source nodes are merged during compression. In our
work, we focus on back-tracking, where srcid is not a query
constraint, hence the query transformation is simplified. More-
over, the node mapping progress is fast due to the small num-
ber of objects compared to the events.

For each given destination ID, at most one combined edge
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Figure 5: The SEAL architecture of online compression and
querying.

will be returned as an answer in each chunk (containing 10°
to 10° events depending on the chunk size). This observation
combined with the fact that the dependency graph is much
smaller after compression effectively controls the query over-
head in our experiments.

To quickly access the node map as in Table 2, it is cached
using a hash map. Given that the number of nodes is much
smaller than the number of edges, the memory size of this
hash map is a small fraction of the database size.

5 Evaluation

5.1 Experiment Setup

Our evaluation about compression is primarily on a dataset
of system logs collected from 95 hosts by our industrial part-
ner, which we call DS;,;. This dataset contains 53,172,439
events and takes 20GB in uncompressed form. For querying
evaluations, we select a subset of DS;,; covering 8 hosts, with
46,308 events and a total size of 8 GB. As DS},,; does not have
ground-truth labels of attacks, we use another data source un-
der the DARPA Transparent Computing program [16]. The
logs are collected on machines with OS instrumented, and a
red team carried out simulated APT attacks. Multiple datasets
are contained, and each one corresponds to a simulated at-
tack. We use CARDET'Ss dataset, which simulates an attack
on Ngnix server, with a total of 1,183M events (27% write,
25.8% read and 47.2% execute), and we term this dataset
DS ;. Since our system focuses on event merging, we only
compress the edges and a subset of the attributes, with 233GB
data size.

We implemented SEAL using JAVA version 11.0.3. We
use JDBC (the Java Database Connectivity) to connect to
PostgreSQL Database version Ubuntu 11.3-1.pgdg18.04+1.
For DS;,4, we run our system on Ubuntu 14.04.2, with 64 GB
memory and Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHZ.
To run the queries, one machine with AMD Ryzen 7 2700X



Eight-Core Processor and 16GB memory is used. For DSy,
we run the system on Ubuntu 16.04, with 32 GB memory and
Intel(R) Core(TM) 17-8700 CPU @ 3.20GHz.

Section 2.3 compares the designs between SEAL and other
systems, and demonstrates when other systems introduce er-
rors to attack investigation. In this section, we quantify the
difference, and select the method of Full Dependency (FD)
preservation [37] as the comparison target, which strikes a
good balance between reduction rate and preservation of anal-
ysis results. Under FD, A node u is reachable to v if either
there is an edge ¢ = (u,v) or there is a causality dependency
e, — ey, wWhere e, is an outgoing edge of u, and e, is an in-
coming edge of v. We implement a relaxed FD constraint,
where repeated edges (between any pair nodes) are merged
such that the reachability for any pair of nodes in the graph
is maintained. The corresponding compression ratio is better
than FD since it is a relaxation. We compare the relaxed FD
with our method SEAL.

Our evaluation focuses on the following aspects. In
Section 5.2, we study the data compression ratio and the
number of reduced events for different hosts and differ-
ent accessright operations (read, write, and execute). We
demonstrate the impact of the assigned chunk size (for
caching events) on the reduction factor. We compare our
method to relaxed FD on compression rate. In Section 5.3, we
compare the processing time of running back-tracking queries
on the compressed and uncompressed databases. For the com-
pressed case, the time for the database to return the potential
merged events and the time for SEAL to post-process them are
investigated. We show the accuracy advantages of lossless
compression under queries with time constraints. Finally in
Appendix B, we evaluate the accuracy of the average degree
estimator and compare it with direct uniform sampling.

5.2 Compression Evaluation

Compression ratio. We measure the compression ratio as
the original data system over the compressed data system
using the above two chunk sizes. For DS;,,;, when the chunk
size (number of cached events) is 10%, the compressed data is
reduced to 7.6 GB from 20 GB, resulting in a compression
ratio of 2.63x. For DS, ., the chunk size equals one file size
and contains around 5 x 10° events. The compressed size is
18 GB reduced from 233GB, resulting in a compression ratio
of 12.94x.

Reduction factor for different operations and hosts. To
further understand the compression results, we investigate
the reduction factor, defined as the number of original events
divided by the number of compressed events. We focus on
DS;nq, and some examples of the hosts and the average reduc-
tion factors from 95 hosts are illustrated in Table 3. In the
table, we list results for the chunk size of 10° as well as 10°.

It can be observed that the types of events (read, write, and
execute) differ by the hosts. We observed that in DSj,,4, read
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Figure 6: The cumulative distribution of the reduction factors
for the 95 hosts in DS;,;. The reduction factor is calculated
for all three types of operations, read, write, and execute, and
the overall events in each host.

is the most popular operation among most of the hosts, where
72 hosts have more than 50% read events. Write is much less
prevalent in general, where 67 hosts have between 10% to
30% write events. Finally, execution varies by the host, and
69 hosts have between 10% to 60% executions.

On average, the reduction factor of execute events is higher
than reads, and writes have the lowest reduction factor, as
can be seen from the last row of Table 3. However, for each
host, this ordering changes depending on the structure of the
dependency graph, e.g., if there exist many repeated events
between two nodes. Host 5 is an example that has reduction
factors similar to the average case. Hosts 23, 52, 3 see higher
reduction factors of read, write, and execute events, respec-
tively. Host 94 is an example of high reduction factors for all
events. In Figure 6 we plot the cumulative distribution of the
reduction factors among the 95 hosts.

The number of events of a host affects the reduction factor
to some extent. In particular, if the number of events is less
than the chunk size, as occurred for a few hosts when the
chunk size is 10°, the cache is not fully utilized, and fewer
merge patterns may be found. However, some hosts with a
small number of events still outperform the overall case as
the last row in Table 3, due to their high average degree.

Previous works like NodeMerge focus on one type of oper-
ation, such as read [77], and show a high data reduction ratio
on their dataset. Our result suggests such an approach is not
always effective, when compressing data from different types
of machines (e.g., Host 94). As such, SEAL is more versatile
to different enterprise settings.

Chunk size. When the chunk size is increased from 107 to
10, the overall reduction factor is increased by 1.7 as in the
last row of Table 3. Correspondingly, the consumed memory
size is increased from 134 MB to 866 MB. The cumulative
distribution of the reduction improvement, which is the re-
duction factor of chunk size 10° divided by that of chunk
size 10, is plotted in Figure 7. The improvement is due to
the fact that when more events are considered in one chunk,



Host ID | Event Count / Reduction | Read % / Reduction Write /Reduction Execute / Reduction

5 278913 /9.25x / 5.85x 61% /6.6x / 4.1x 11% /9.2x / 8.4x 28% / 65.3x / 33.0x

23 880162 /25.45x /19.14x | 91% /37.7x / 26.9x 8% /5.3x / 4.5x 1% /35.8x / 13.2x

52 523671/41.45x/17.36x | 70% /39.1x/14.8x | 22% / 54.9x / 47.5x 8% /36.6x / 14.7x

3 312392 /15.37x/13.31x | 36% /12.6x/10.8x 29% / 8.8x / 8.4x 34%/ 125.8x / 52.3x
94 517978 / 78.82x / 26.9x 20% /19.8x /6.1x | 8% /200.6x/96.3x | 72% / 346.0x / 209.1x

All 53172439/9.81x/5.71x | 65% /10.3x / 5.5x 19% / 5.3x / 3.7x 15% /76.3x / 38.7x

Table 3: Example hosts and the reduction factors. The reduction factors are measured for two chunk sizes: 10® and 10°. The last

row shows the overall result for the 95 hosts.
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Figure 7: The cumulative distribution of the improvement
over the 95 hosts when the chunk size is increased from 10°
to 10°. The improvement for Read, write, execute, and overall
events in each host is calculated.

more edges exist in the dependency graph, but the number of
nodes does not increase as fast. A larger average degree and
hence a larger reduction factor is achieved. It can be seen that
the execute events change the most with a larger chunk size,
while the write events change the least with the chunk size.
This also is consistent with the fact that executions have more
repeated edges between processes while write events operate
on different files over time.

Comparison to FD. We use DS, to compare SEAL and FD,
as the DARPA data is also used by Hossain et al. [37]. Figure
8 shows the compression ratio of four methods: 1) “opti-
mal” — keeping only one random edge between any pair of
nodes, which violates causality dependency but gives an up-
per bound on the highest possible compression ratio when
repeated edges are reduced, 2) “FD” — removing repeated
edges under relaxed full dependency preservation, 3) “SEAL
repeat edge” — our method that only compresses all repeated
edges, and 4) “SEAL” — our method that compresses all in-
coming edges of any node.

Figure 8 shows that if we only compress the repeated edges
by SEAL, we can get almost the same compression ratio
as FD. Both methods are close to the minimum possible
compressed size under repeated edge compression. Besides,
if we compress all the possible edges using SEAL, we get
a compression ratio of 12.94x compared to 8.96x for FD
preservation.
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Figure 8: Comparison between our methods and FD.
5.3 Query Evaluation

We measured the querying and decoding time cost of SEAL
as well as the querying time of the uncompressed data. We
use a dataset with 830,235 events under DS;,,; and run back-
tracking through breadth-first search (BFS) to perform the
causality analysis for every node. We use BFS here as it
can be seen as a generalization of causality analysis: if no
additional constraints are assumed, causality analysis is BFS
under causality dependency. In particular, starting from any
POI node x, we query for all incoming edges ej,ez,...,eq
and the corresponding parent nodes yy,ys,...,yq, Where d is
the incoming degree of x. Then for each node y;, 1 <i <d,
we query for its incoming events whose starttime is earlier
than that of e;. The process continues until no more incoming
edge is found.

Figure 9 shows the performance of this evaluation. The
querying and the decoding time on the compressed data nor-
malized by the querying time on the uncompressed data are
plotted. We obtain 133 start nodes each of which returns
more than 2,000 querying results. We observe that 89 % starts
nodes (118 out of 133) use less time than the uncompressed
data, and 30 start nodes use less than half the time of the un-
compressed data. Moreover, on average decompression only
takes 18.66% of the overall time, because only potentially
valid answers are decompressed. It is also observed that the



NID Number of Reachable Nodes/Edges
Uncmp SEAL Cnstrnd | Cnstrnd
Uncmp SEAL
1 1093/4302 | 109374302 | 293/779 | 293/779
2 9496/37944| 9496/37944| 1457/5999| 1457/5999
3 178/616 178/616 116/358 | 116/358
4 45/3739 45/3739 1172113 | 11/2113

Table 4: The results of back-tracking starting from 4 nodes.
“NID”, “Uncmp” and “Cnstrnd” are short for “Node ID”, “Un-
compressed” and “Constrained”.

querying time of SEAL is only 63.87% of the querying time
for uncompressed data. For DS, SEAL runs on about 5.27M
nodes, 15.47% nodes use less time than the uncompressed
data, and on average takes 1.36x time of the uncompressed
data.

Note that queries usually have a restrictive latency require-
ment while compression of collected logs can be performed at
the background of a minoring server. Our method tradeoff the
computation during compression for better storage efficiency
and query speed.

Evaluation of attack provenance. Here we use the simu-
lated attacks of DSy to evaluate whether SEAL preserves
the accuracy for data provenance. We use four processes on
two hosts (two for each) which are labeled as attack targets
(tal-cadets-2 and tal-cadets-1) as the starting nodes.
Then we run the BFS queries, and count 1) the number of
nodes reachable from a starting node (reachable is defined
in Section 5.1) and 2) the number of edges from a starting
node to all its reachable nodes. Table 4 (Columns 2 and 3)
shows the number of reachable nodes and edges in the BFS
graph. It turns out SEAL returns the exact same number of
reachable nodes and edges as the uncompressed data, indicat-
ing it preserves provenance accuracy. Next, we demonstrate
the versatility of our lossless method for queries with time
constraints, for example, when the analyst knows that the at-
tack occurred in an approximate time period [f1,7,]. Since
our lossless compression can restore all the time information,
we can add arbitrary constraints to our analysis without any
concerns, which is verified by the last two columns (Column
4 and 5) of Table 4. Lossy reduction methods, such as FD,
even though preserve certain dependency, still lose time in-
formation once edges are removed, and thus might introduce
false connectivity under time constraints (see Figure 2 for an
example).

6 Discussion

Limitations and future works. DS;,,; is collected for a small
number of days and a subset of all hosts from our industrial
partner. Therefore, a larger dataset may provide a more com-
prehensive understanding of the performance for SEAL. The
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Figure 9: Querying and decompression time of back tracking
with 133 start nodes that return the largest result sizes, nor-
malized by the querying time of the uncompressed data. The
nodes index are sorted by the query time.

compression ratio can be further improved through two possi-
ble methods. First, the proposed algorithms reduce the number
of events, but the properties of all merged events are loss-
lessly compressed together. Even though such compression
produces a hundred percent accuracy for log analytics and the
merge patterns can be easily found, dependency-preserving
timestamp lossy compression may improve the storage size.
Second, domain-specific knowledge can be explored such
as removing temporary files [45]. Another limitation is the
memory overhead to store the node map as in Table 2, which
is the only extra data other than the events. Our experiment
results show that the node map takes 114 MB on disk, but
consumes 1.4 GB when loaded into memory. The memory
cost can be reduced by replacing generic hash maps of Java
with user-defined ones.

Potential attacks. When the adversary compromises
end-hosts and back-end servers, she can pro-actively in-
ject/change/delete events to impact the outcome of SEAL. Log
integrity needs to be ensured against such attacks, and the ex-
isting approaches based on cryptography or trusted execution
environment [9,40, 60,64,71] can be integrated to this end.
One potential attack against SEAL is denial-of-service at-
tack. Though delta coding and Golumb coding are applied to
compress edges, all timestamps have to be “remembered” by
the new edge. The adversary can trigger a large number of
events to consume the storage. This issue is less of a concern
for approaches based on data reduction, as those edges will
be considered as repeated and get pruned. Moreover, knowing
the algorithm of compression ratio estimation, the adversary
can add/delete edges and nodes to mislead the estimation
process to consider each block incompressible. On the other
hand, such denial-of-service attack will make the performance
of casualty analysis fall back to the situation when no com-
pression is applied at most. The analysis accuracy will not be



impacted. Besides, by adding/deleting an abnormal number of
events, the attacker might expose herself to anomaly detection
methods.

Qut-of-order logs. Due to reasons like network congestion,
logs occasionally arrive out of order at the back-end analysis
server [84]. Since the dependency graph possesses temporal
locality, such “out-of-order” logs result in potential impact
on the compression ratio. This issue can be addressed by the
method described as follows. Assuming the probability of out-
of-order logs is p, the server can reserve pN temporary storage
to hold all out-of-order logs in a day, where N is the daily
uncompressed log size. During off-peak hours, the server can
process each out-of-order log. For log from Node u to Node
v, we 1) retrieve in the compressed data the merged edges
to v and decompress the timestamps, and 2) merge the edge
(u,v) with the retrieved edges and compress the timestamps.
Since the probability p is typically small and off-peak hours
are utilized, out-of-order logs can be handled with smoothly.

Generalizing SEAL. Though SEAL is designed for causal-
ity analysis in the log setting, it can be extended to other
graphs/applications as well. Generally, SEAL assumes the
edges of a graph have attributes of timestamp, and the appli-
cation uses time range as a constraint to find time-dependent
nodes/edges. Therefore, the data with timestamp and entity
relations, like network logs, social network activities, and rec-
ommendations, could benefit from SEAL. Besides forensic
analysis, other applications relying on data provenance, like
fault localization, could be a good fit. We leave the explo-
ration of the aforementioned data/applications as future work.
In terms of the execution environment of SEAL, we assume
SQL database stores the logs on a centralized server, like
prior works [37,45,77,83]. It is possible that the company
deploying SEAL in a distributed environment (e.g., Apache
Spark) with non-SQL-based storage. How to adjust SEAL to
this new environment worth further research as well.

7 Related Works

Attack Investigation. Our work focuses on reducing the stor-
age overhead of system logs while maintaining the same
accuracy for attack investigation, in particular causality analy-
sis. Nowadays, causality analysis is mainly achieved through
back-tracking, which was proposed by King et al. [42]. This
technique has been extended to scenarios like file system
forensics [73] and intrusion recovery [26]. In addition to
desktop computers, the technique has been applied to high-
performance computers [15] and web servers [3,4].

As keeping system logs from machines in an enterprise
consumes paramount storage space, recent research efforts
are focused on reducing such overhead. One main approach is
to remove logs matching certain conditions, including edges
with same source and target [83], temporary files [45], fre-
quent invocation of programs [77] and identical events with

multiple versions [37]. In addition, the labels provided by op-
erating systems [76] and access control polices [5] have been
leveraged for log removal. The fundamental difference of
SEAL is that it compresses logs under various codes, such that
all information useful for attack investigation is preserved.

As the system logs are generated by the logger of end-
hosts, a number of works studied how to improve the ef-
ficiency of the logger. In particular, in-kernel cache [49],
kernel-space hooks [65, 66], dual execution [43], execution
partitioning [50], tracing-tainting alternation [51], on-demand
information flow tracking [39], and library-aware tracing [81]
have been proposed to enhance the logger for efficient prove-
nance analysis. In addition to efficiency, the security of the
logger itself has been investigated [6,9]. Since SEAL is ap-
plied on the side of the data aggregator, it can complement
the approaches on the side of end-hosts.

After the logs are collected, how to connect and repre-
sent them is very important for effective attack investigation.
Most of the effort has been spent on tailoring the logs for
graph-based analytics [31,33,36,57,58,70]. Besides, some
works studied how to reconstruct the “crime scene” from the
logs [46,56,67,80]. Since the result of the log analytics needs
to be processed by human analysts, research has been done to
develop new domain-specific query languages [23-25,44,72]
and task prioritization [34, 48] to reduce their workload.

Breach Detection in Enterprise Environment. Prior to at-
tack investigation, the detection systems like Firewall, Web
Proxy, and IDS deployed by the enterprise needs to identify
the breach promptly and generate alerts. A line of research has
been done to mine attacks from enterprise logs with machine-
learning techniques. Classical machine-learning models like
logistic regression and random forest have been applied to de-
tect malicious domains from network logs [62,63,84] and ma-
licious files from end-host logs [10]. Recently, deep-learning
models like Long short-term memory (LSTM) [19] and em-
bedding [47] are leveraged for the similar purposes. While the
primary application of SEAL is on causality analysis, it could
be adjusted for breach detection and we leave this exploration
as future works.

Data Compression on Databases. Compression on
databases can be traced back to Bassiouni [2] and Cor-
mack [13] in 1985, where compression techniques are ap-
plied to the properties or fields of the records. Graefe and
Shapiro [29] proposed to compress the properties and query
on compressed data as much as possible. Compression across
different properties was investigated in [68] in order to ex-
plore the dependency among related fields. Column-oriented
database [1, 38, 75] stores each column of the database sep-
arately, and compression potential along the column can be
explored. Compression of bitmap indexes has been devel-
oped in a variety of works, e.g., [12,61, 74, 82] to improve
query processing. We investigate a new application, causality
analysis, with compression.



8 Conclusion

Causality analysis reconstructs information flow across dif-
ferent files, processes, and hosts to enable effective attack
investigation and forensic analysis. However, it also requires
a large amount of storage, which impedes its wide adoption by
enterprises. Our work shows the concern about storage over-
head can be eased by query-friendly compression. Comparing
to prior works based on data reduction, our system SEAL of-
fers similar or better storage (e.g., 9.81x event reduction and
2.63x database size reduction on DS;,;) and query efficiency
(average query speed is 64% of the uncompressed form) with
guarantee of no false positive and negative in casualty queries.
We make the first attempt to integrating the techniques in
the coding area (like Delta coding and Golumb coding) with
a security application. We hope in the future more security
applications can be benefited with techniques from the coding
community and we will continue such investigation.
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A Compression Ratio as a function of Average
Degrees

In this section, we derive explicit expressions for the compres-
sion ratio. We show that the compressed graph size is always
smaller than the original size, though new vertices might be
introduced.

In a dependency graph G = (V, E), the number of vertices
(nodes) is denoted by n = |V|, and the number of edges is
denoted by m = |E|. Recall that the edges are directed and
multiple edges (repeated edges) may exist from one node to
another. For node v € V, let its number of parent nodes be
Py, and its number of incoming edges be m,. We have m =
Y ,ev my,. Moreover, denote by p =Yy p, the total number
of parent nodes for all nodes in V. Therefore, p represents
the number of edges of G after removing repeated ones. Let
Gundirectea denote the undirected graph which is identical to
G except that edge directions are removed. Let Gyipypie denote
the simple graph obtained by removing the edge directions
and the repeated edges from G. The average degree of the
graph Gyugirecrea 18 denoted by dgye. Then,

2m _ 2Y ey my
no n ’

“4)

davg =
The average degree of Gyypie is denoted by pgy,, Which is

2 2%
Pavg = 7p = v;V pv. (5)

Denote by Seyens, Snode the event and node sizes before
compression, and by S,,,,.,, S!._ ;. the sizes after compression.

They can be calculated by

Sevent = Z My Ceyent, (6)
veV

S;vem = (Cevenl + vaCA) + Z Ceventv (7)
veVim,>1 veVim,=1

Snode = NCpode, ¥

Sl/wde = nCyode + Size_map. )

Here Cepenr = 105 (measured in bytes) is the size of all at-
tributes of an event in the uncompressed format. In our
database, C,,.,; includes the sizes of starttime , endtime,
agentid, etc. Cy is the delta-encoded data and separator size
for each time entry, and the factor 2 reflects that two time at-
tributes are recorded for every event. For most of the cases we
have observed, Cy < 4 bytes. C,,5q4. 1s the size of one node en-
try in the uncompressed format, including the size of nodeid,
nodename, etc. Finally, size_map is the node map shown in
table 2, and can be expressed as

size_map = ZCID(pV—i—l). (10)

veV

Here Cjp = 4 is the constant size required for each nodeid.
The above size parameters depend on the particular database



attributes, and to allow for an arbitrary database design, we
use the general expressions instead of the particular sizes. In
our experiments, S;,q. and S;o 4. take a negligible fraction of
the total storage. As a result, we ignore the node sizes in the
following calculations. However, an exact calculation can be
carried out if the node size is comparable to the event size.
The difference between the original size and the com-

pressed size is:

Sevent - S/gven[ (1 1)
= Z (mv(cevent - 2CA) - Cevent) . (12)
veVim,>1

It is obvious that the compressed size is always smaller than
the original size if Ceyenr > 2Ca, Which is true in our deploy-
ment. The compression ratio can be expressed as

S
ratio = fvem 13)
event

Z ZVGV mvCevenz (1 4)
Yrev (Cevent + 2mvCA)

_ MCoeyent (15)
NCeyent +2mCx

_ davgcevent (16)
2Cevent + 2dangA

Equation (14) holds because we remove the condition m, > 1
in the denominator, and thus we obtain a lower bound on the
ratio. In Equation (16) we multiply the numerator and the
denominator by % and used Equation (4). If the node size is
also included, the ratio will also depend on p,,, defined in
Equation (5).

Remark. 1) Let us call the dependency graph “incompress-
ible” if its compression ratio is lower than a given threshold.
It is often unacceptable to compress graphs that are incom-
pressible. Therefore, our estimated compression ratio is a
lower bound of the exact ratio (e.g., the inequality of Equa-
tion (14)). 2) The discussion in Section 3.6 assumes that the
node map size is negligible. If it is not, we also need to esti-
mate p,y,. Note that p,,, corresponds to the average degree
of the simple graph Gy;ypie, One can simply apply Algorithm
2to H = Ggimple-

B Average Degree Estimator Evaluation

We measure the performance of the compression ratio (or
average degree) estimator on our dataset following Algorithm
2. We run the algorithm on 8 chunks, each containing 10°
events. For each chunk, 20 independent trials are conducted.
The parameters are chosen to be 8 = 10, p j;mp = 0.1, such
that the estimation error is minimized for the chunks in the
experiment. We measure the mean squared error (MSE) be-

tween the estimated average degree d and the true average
degree d¢, averaged over all trials and all chunks in the ex-

periment. The results are shown in Figure 10. The MSE value
has an obvious drop as the sample size percentage grows up
to 5% and quickly converges when the samples cover half of
the whole trunk. We then set 5% as the sample size.

Figure 10 also shows that our method has better accuracy
compared to the naive estimator, which estimates d,; by
directly calculating the average degrees of uniformly sampled
nodes.
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Figure 10: The y axis is the mean square error distance be-
tween the estimated average degree from the sampled data
and the true average degree, averaged over all trials and all
chunks in the experiment. The x axis is the percentage of the
sample.
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