
Invisible Probe: Timing Attacks with PCIe
Congestion Side-channel

Mingtian Tan∗, Junpeng Wan∗, Zhe Zhou†
School of Computer Science

Fudan University
{18210240176,19210240003,zhouzhe}@fudan.edu.cn

Zhou Li
University of California, Irvine

zhou.li@uci.edu

Abstract—PCIe (Peripheral Component Interconnect express)
protocol is the de facto protocol to bridge CPU and peripheral
devices like GPU, NIC, and SSD drive. There is an increasing
demand to install more peripheral devices on a single machine,
but the PCIe interfaces offered by Intel CPUs are fixed. To resolve
such contention, PCIe switch, PCH (Platform Controller Hub),
or virtualization cards are installed on the machine to allow
multiple devices to share a PCIe interface. Congestion happens
when the collective PCIe traffic from the devices overwhelm the
PCIe link capacity, and transmission delay is then introduced.

In this work, we found the PCIe delay not only harms device
performance but also leaks sensitive information about a user
who uses the machine. In particular, as user’s activities might
trigger data movement over PCIe (e.g., between CPU and GPU),
by measuring PCIe congestion, an adversary accessing another
device can infer the victim’s secret indirectly. Therefore, the delay
resulted from I/O congestion can be exploited as a side-channel.
We demonstrate the threat from PCIe congestion through 2
attack scenarios and 4 victim settings. Specifically, an attacker
can learn the workload of a GPU in a remote server by probing a
RDMA NIC that shares the same PCIe switch and measuring the
delays. Based on the measurement, the attacker is able to know
the keystroke timings of the victim, what webpage is rendered
on the GPU, and what machine-learning model is running on
the GPU. Besides, when the victim is using a low-speed device,
e.g., an Ethernet NIC, an attacker controlling an NVMe SSD can
launch a similar attack when they share a PCH or virtualization
card. The evaluation result shows our attack can achieve high
accuracy (e.g., 96.31% accuracy in inferring webpage visited by
a victim).

I. INTRODUCTION

Devices peripheral to CPU are innovated at a fast pace.
For instance, the speed of NIC (Network Interface Card)
has been increased from 10 Mbps to 10 Gbps in the recent
decade [1]. The throughput of hard drives is improved 100x
due to new storage techniques like NVMe (Non-Volatile Mem-
ory Express) [2]. Followed by the upgrade of the peripheral
devices, the data volume exchanged between them and CPUs
is “exploding”. The traditional PCI (Peripheral Component
Interconnect) protocol cannot meet such demand, hence PCIe
(PCI express) was proposed and has become the de facto
protocol for I/O between CPU and peripheral devices [3].
I/O switch and congestion. Though PCIe supports high
throughput I/O, e.g., 16 GB/s for a PCIe 3.0 link [4], the

∗
The first two authors are equally contributed. † Zhe Zhou is the corre-

sponding author.

support from CPU seems to fall behind. For example, only
three 16-lane PCIe interfaces are provided by the Intel high-
end CPUs [5], but a computer can integrate a large number
of peripheral devices. For instance, 8 GPUs, 4 NVMe SSDs,
and 1 x16 high-speed NIC are equipped by Tyan Thunder
HX FT77DB7109 [6], a mainstream server for deep learning.
Apparently, a gap exists between CPU’s limited PCIe support
and the strong demand for high-speed peripheral devices. As
an intermediate solution, PCIe switch and PCH (Platform
Controller Hub) are invented to expand CPU’s PCIe support,
which we term I/O switch in this paper. With I/O switch, two
or more I/O devices can share a PCIe link and send data to
the same PCIe interface of CPU. Besides link share, a GPU
can directly talk to NICs and SSDs without the involvement
of CPU, with the help of PCIe switches, which is termed RTX
IO by NVIDIA [7].

However, I/O switch also introduces a new problem: I/O
congestion. When one device fills a PCIe link (e.g., Nvidia
GTX 1080Ti GPU can produce 480 GB/s data [8]), the PCIe
packets generated by the other devices sharing the same I/O
switch will be delayed due to point-to-point credit-based flow
control of PCIe [9]. While congestion has been well studied
in the network protocols like TCP [10], [11] and the security
issues like denial-of-service (DoS) attacks are well known,
no prior works have looked into the I/O congestion brought
by PCIe on a single machine, not to mention its security
implications. In this work, we make the first attempt to study
these issues.

PCIe congestion side-channel. Through exploratory analysis,
we found the degree of PCIe congestion might reflect the
operational status of a connected device. When a device
transfers data through a congested PCIe link, the interval
between request and response will be increased. Therefore,
if an attacker has access to a device that shares a PCIe link
with another device used by a victim, the attacker can keep
probing the link and use the delay to infer the status of the
victim device. Furthermore, as the device I/O patterns can be
determined by the user’s activities (e.g., typing and browsing),
the attacker can recover the sensitive user information from the
probed delays potentially.

Though the high-level idea is simple, measuring the delay at
high resolution and recovering the user’s information at high

accuracy is non-trivial. The attack seems impossible initially
using traditional probing methods (e.g., keep reading procfs
of Linux [12]) and time measurement (e.g., clock()). But
the new functionalities provided by the software and hardware
stacks of peripheral devices enable our attack, as we observed.
Here we name a few: 1) Kernel-bypass removes the random
delays from CPU scheduling and interrupts, conserving the at-
tacker’s measurement to the communication latency. 2) RDMA
(Remote Direct Memory Access) NICs widely installed on
data centers and public clouds allow the attacker to transmit
data at ultra-low latency, leading to a very high sampling rate
of a PCIe link. 3) The hardware clock provided by RDMA
NIC enables high-precision measurement.

Our attack and evaluation. Based on the above observa-
tions, we propose a new side-channel attack that exploits
PCIe I/O congestion, termed INVISIPROBE. We demonstrate
INVISIPROBE in two scenarios.

Firstly, when the victim uses a high-speed device like GPU
on a server, an attacker can use an RDMA NIC on her
machine to probe the RDMA NIC on the server and infer the
victim’s secret. We demonstrate three attack settings, including
1) inferring keystroke events and words typed by the victim; 2)
inferring the webpages visited by the victim; 3) inferring the
machine-learning model trained by the victim. We found the
delay (for keystroke inference) or delay sequence (for webpage
and model inference) patterns are distinguishable, due to the
unique data movement patterns between CPU and GPU. To
achieve accurate inference on the probed delays, we develop an
inference model based on Attention-Based Bidirectional LSTM
(AttBLSTM) [13], which is capable of handling long sequences
with variable length.

In addition to the high-speed device, we found the low-
speed device used by a victim is not immune to INVISIPROBE.
When a victim is using an Ethernet NIC, e.g., 1Gbps NIC, an
attacker can probe the server’s NVMe SSDs at high frequency
to introduce PCIe congestion, and measure the delays at the
same time. We demonstrate that the collected delays can help
the attacker infer which website is visited, due to that loading
different websites results in different file downloading patterns.

We evaluate the four proposed attacks in a lab environ-
ment consisting of one server and one PC. To highlight the
evaluation results, 98.97% keystroke events can be detected,
and 96.31% visited webpages can be correctly classified, in
the first attack scenario. We also evaluate the second attack
scenario in a public cloud, Alibaba cloud, and found high ac-
curacy (91.02% for webpage inference) can be achieved. Our
results indicate the threat is practical when PCIe congestion
is exploited by an attacker. As I/O switches become prevalent
in data centers and the recent trend encourages PCIe switches
to be shared by I/O devices across machines, i.e., through
PCIe fabric, we believe more attention should be paid by the
security community. We propose a few directions for threat
mitigation and are discussing them with cloud providers like
Alibaba cloud.

Contributions. We summarize our contributions below.

• We identify a new side-channel attack exploiting the
unique features of PCIe congestion.

• We develop two concrete attack strategies: using RDMA
NIC to attack GPU and using NVMe SSD to attack
Ethernet NIC.

• We evaluate the two strategies under 3 victim scenar-
ios: keystroke typing, webpage browsing and training
machine-learning model. The result shows our method,
INVISIPROBE, is effective.

• We will release the code and experimental data after the
discussion with the stake-holders to help other researchers
investigate the related issues.

II. BACKGROUND

A. PCIe

PCIe (Peripheral Component Interconnect Express) is the de
facto protocol for the peripheral devices to transmit data to a
processor [3], thanks to its prominent advantages like higher
maximum bus throughput. There are 4 ways to let a device
communicate through PCIe. 1) Installing the device on the
PCIe slot of the motherboard, e.g., discrete GPU; 2) Installing
the device on another type of slot which is compatible with
PCIe protocol, e.g., installing NVMe (Non-Volatile Memory
Express) SSDs on M.2 slots; 3) Soldering a device on the
motherboard and using PCIe protocol, e.g., onboard NIC
(Network Interface Card); 4) Leveraging a controller to convert
a different protocol used by a device to PCIe protocol, e.g.,
SATA hard disks.

The communication between PCIe devices is carried out by
interconnect (or link). A link consists of one or more lanes,
which carries a full-duplex byte stream, producing 985 MB/s
bandwidth per lane per direction for the version supported by
the mainstream Intel CPUs [14]. The number of lanes per link
can be 1, 2, 4, 8, or 16. Thus, the device’s PCIe speed can be
adjusted based on the number of occupied lanes.

Different from PCI protocol in which a shared parallel
bus architecture is used and the bus clock is constrained by
the slowest peripheral device, PCIe protocol is packet-based,
which enables more efficient bus usage. Similar to the network
stack, PCIe has three layers and they are transaction layer,
data link layer, and physical layer. The data are encapsulated
into packets by transaction layer and routed based on memory
address, I/O address and device ID [15]. The data link layer
handles integrity check, flow control, and re-transmissions,
ensuring the data integrity and reliability for the upper layers.
To this end, point-to-point credit-based flow control [9] is
employed by PCIe. On a PCIe link, the receiver notifies the
sender the size of the receiving buffer reserved for it ahead,
and the data transmitted by the sender is always under the
buffer limit.

B. PCIe Topology

PCIe allows devices to connect to the processor in a tree-
like topology [15]1, with the help of PCIe switch and PCH

1In the future, PCIe fabric may be used in a data center, changing the
topology to a network-like topology.

Root Complex

CPU Cores

Memory
Controller

PCH
PCIe

Switch
PCIe

Device

GPU

Other
Device

RDMA
NIC

NVMe
SSD

NIC

Fig. 1: PCIe topology and adversary model.

(Platform Controller Hub). In this work, we term them jointly
as I/O switches as they have similar functionalities in routing
PCIe packets. An I/O switch has upstream and downstream
ports connecting to different devices, in order to separate the
data flow. Figure 1 illustrates one common PCIe topology.
Specifically, the PCIe lanes interfaced by CPU and the memory
controller are connected to a component named root complex
which is further connected to the peripheral devices. The
connection between the root complex and peripheral devices
can be divided into three classes.

Firstly, a small number of high-speed interfaces of root com-
plex are directly connected to high-speed devices. For main-
stream Intel CPUs like “Coffee Lake” CPUs [16], interface to
16-lane PCIe link is provided, which can be used by a discrete
GPU.

Secondly, relatively slow devices, like hard disks, sound
cards, and NICs, are connected to PCH before the root com-
plex, which is the standard component on desktop machines
and also servers. Direct Media Interface (DMI) is used as
the channel between CPU and PCH, which has nearly the
same design as 4-lane PCIe link. A PCH can connect to
many devices, each of which possesses at least one PCIe lane.
However, the resulted total I/O throughput can be much larger
than what DMI can provide. Thus, DMI allows the connected
devices to share the bandwidth of the four PCIe lanes.

Thirdly, the PCIe switch is used to expand CPU’s capa-
bilities in connecting more PCIe devices, especially on high-
performance servers. While the CPU integrated by a server
usually provides high-speed interfaces for direct connection
to PCIe devices, it might be insufficient to meet the demand
of adding PCIe devices. For example. Tyan Thunder HX
FT77DB7109 [6], a mainstream server for deep learning,
equips 8 GPUs, 4 NVMe SSDs, and 1 x16 high-speed NIC. As
only three 16-lane PCIe interfaces are provided by the CPU
(“Cascade Lake-SP” [5]), the server manufacturer converts one
16-lane PCIe interface into two or more interfaces by using a
PCIe switch.

C. RDMA

To reduce the network latency and CPU consumption on the
server, RDMA (Remote Direct Memory Access) was proposed

to allow a data sender to directly access the memory region
of a receiver, without waiting for the receiver’s CPU. Most
RDMA functionalities are implemented by RDMA NICs, sup-
porting one-sided or two-sided RDMA operations. In the one-
sided setting, the RDMA application at the server registers one
or multiple memory regions with a RDMA NIC. The virtual
address of the memory region as well as a key corresponding
to the memory region will be sent to the client. When the client
is going to read the memory in the server, she constructs and
sends a special RDMA read packet that contains the address of
the memory to be read as well as the key. The server’s RDMA
NIC directly reads the requested memory for the client once
receiving the packet, without interrupting the CPU. The value
of the requested memory will be encapsulated in the response
packet that will be delivered back to the client. In the two-
sided setting, the CPUs of the sender and the receiver are
both involved.

A few RDMA implementations have been developed un-
der the standard RDMA protocol, namely InfiniBand [17],
RoCE [18] and iWARP [19]. We tested our attack under
InfiniBand as it is the native physical layer protocol of RDMA.

Currently, RDMA has seen strong adoption in data centers
and cloud, resulting in high-performance applications related
to key-value storage [20], graph processing [21], machine-
learning [22] and etc. We consider RDMA as one attack vector
to enable our attack, INVISIPROBE.

III. ATTACK OVERVIEW

Using I/O switches to serve multiple PCIe devices and
share the PCIe bandwidth has become the standard solution
to address the constraints of PCIe interfaces. However, it also
opens up possibilities for attacks. In this section, we firstly
describe the threat model. Then, we elaborate on the issue of
PCIe congestion and how it can be exploited as a side-channel.
Finally, we overview the attack procedure.

A. Threat Model

As shown in Figure 1, we assume that among a pair of I/O
devices integrated by a target machine, one interacts with an
attacker and another is used by a victim. Both devices share
the same I/O switch which connects to the upstream CPU. We
assume the attacker cannot access the victim’s data or code
directly, but plans to use INVISIPROBE to infer the victim’s
secrets.

We showcase two scenarios. In the first scenario, the attack
happens in a cloud environment or a data center where a
server allows a remote machine to directly access its memory
through its RDMA NIC (e.g., by running an RDMA key-value
storage). The attacker can control a VM in the same cloud or
a machine in the same data center to interact with the RDMA
NIC of the server. In the meantime, a high-speed device, in
particular a discrete GPU, is used by a victim. GPU and NIC
share the same PCIe switch, which is the setting appeared
in the slides of NVIDIA [7] when NVIDIA is launching the
30 series GPUs. Using RDMA to steal a victim’s secret was
researched recently [23], [24] and our attack setting is similar,

i.e., assuming attacker can interact with an RDMA NIC in
a server, but the goal of the attacks differ. In Section VIII,
we compare to these works in detail. We assume the server
providing GPU acceleration allows multiple users/tenants to
use the machine simultaneously. This assumption has been
justified by previous GPU side-channel attacks [25], [26].
Moreover, we assume the victim can use the GPU exclusively,
which is an even weaker condition comparing to previous
works [25], [26] assuming GPU is shared between the victim
and the attacker.

Under this scenario, we studied three types of attacks. 1)
The server has a VM leased to a victim who types sensitive
text over remote desktop to the VM; 2) The server has a
VM leased to a victim who opens chrome to view webpages
through remote desktop; 3) A victim trains a deep-learning
model on the server. The attack goals are to infer: 1) which
word is typed by the victim; 2) which webpage is browsed by
the victim; 3) which model is trained by the victim.

In the second scenario, we assume the attacker has access to
an NVMe SSD on the server. The attacker can be local (e.g.,
executing a program on the server) or remote (e.g., accessing
the SSD through NVMe fabric [27]). In the meantime, a victim
uses a low-speed device, in particular a standard NIC, on the
server. As described in Section II, PCH is used to serve the
traffic from SSD and NIC together. Under this scenario, we
investigate an attack that is the same as the second attack
under the prior scenario: inferring what pages are visited by
the victim.

B. PCIe Congestion

As PCIe connections resemble network connections, con-
gestion could happen when the data volume to be transmitted
surpass the capacity of PCIe links or I/O switches. Specif-
ically, when the sender learns that the requested receiving
buffer exceeds the capacity of the receiver, it holds the packet
to be sent till the receiver’s buffer is freed, in a process called
back-pressure [15]. The packet transmission will be delayed,
and the delay grows when the data pressure is increased on
the PCIe link, as shown by previous studies [3], [28].

PCIe congestion can be caused by both high-speed and low-
speed devices. For the first case, the data volume generated
by a device alone, like GPU, can cause congestion. For
instance, Nvidia GTX 1080Ti GPU can occupy 480 GB/s
PCIe bandwidth [8], but the 16-lane PCIe link offers no more
than 16 GB/s bandwidth. For the second case, when multiple
devices transmit packets to a PCH simultaneously, congestion
can happen. For instance, a PCH only occupies four PCIe
lanes from CPU. However, an NVMe SSD alone has a four-
lane link to PCH, so it is able to fill all PCH lanes. When
another device shares the same PCH, congestion will happen.
To notice, though PCIe congestion happens frequently, prior
works mostly focused on its impact to the performance of
PCIe fabric [29], [30]. The issue on the single machine and
how it can be exploited for attacks have not been studied.

Through experiments, we found the overhead caused by
PCIe congestion is not negligible, and reflects what happens on

the devices sharing the same I/O switch, to some degree. An
attacker can exploit this finding to measure the I/O latency on
the devices of the target machine (e.g., RDMA NIC and NVMe
SSD) and analyze the portion related to PCIe congestion.
However, the measurement of I/O operations is known to be
fluctuating, due to interrupts [31]. Yet, we found that when the
kernel is bypassed, the measurement becomes stable. For the
first attack scenario, RDMA directly bypasses the kernel [32].
For the second attack scenario, when a kernel-bypass driver,
like SPDK [33] or io_uring, is installed for the NVMe
SSD, the same effect can be observed. In fact, kernel-bypass
driver is widely installed on servers of data centers [34]. In
Appendix A, we explain how kernel-bypass driver helps the
I/O measurement in detail.

C. Attack Procedure

Based on our insights into PCIe congestion, we design IN-
VISIPROBE, a new attack exploiting PCIe congestion as side-
channels. In essence, when congestion is caused by the high-
speed victim device, the attacker can measure the variation
of the I/O latency by sharing PCIe switch to infer the secret
states of the victim. When the victim device is low-speed,
unable to introduce congestion alone, the attacker can tunnel
in a high volume of data to “saturate” the shared PCH switch
and measure the I/O latency at the same time. This subsection
overviews the workflow of INVISIPROBE and Section IV and
V elaborate how INVISIPROBE are implemented against PCIe
switch and PCH respectively.
1. Device pairing for congestion. The attacker first needs to
identify a pair of I/O devices that share an I/O switch. While
the attacker does not directly know the PCIe topology of the
target machine, the chances of finding a device sharing a PCIe
link with the victim device are high, especially at servers. In
Section VI-A we give an example of the PCIe topology.
2. Delay measurement. The attacker probes the I/O latency
of her device using the timing API (e.g., RDTSCP instruc-
tion [35]) to infer the status of the victim device. The probe
must satisfy the following requirements:

• Attacker’s device can complete each probe request within
a short interval, achieving a high sampling rate on a PCIe
link.

• The latency of the probe should be stable, so its variance
should be small when the same data volume is encoun-
tered by a PCIe link.

• The congestion level should be proportional to the probe
delay.

In Section IV and V, we describe how the probes on NIC
and NVMe SSD are constructed under the above requirements.
3. Inferring the secret. After the delays of the probes are
collected, the attacker will analyze them to infer the victim’s
activities. Based on our exploratory analysis, the mapping
between them is not straightforward, therefore we leverage
supervised learning techniques to obtain such mapping and
use it to classify user’s activities.

Challenges. While the attack procedure is simple at a high
level, there are some challenges we need to address in at-
tack implementation. Firstly, the choices of the probe are
paramount (e.g., different I/O APIs, their parameters, and
device access patterns), but most of them cannot fulfill the
three proprieties in the delay measurement. Secondly, high-
resolution tools are required to measure the I/O latency so the
“weak signals” from users’ sensitive activities can be captured.
The regular measurement tools provided by OS cannot pro-
vide enough accuracy for latency measurement. Thirdly, the
attacker cannot directly measure the victim’s device, and the
probes she issues might interfere with her observations. To
solve those challenges, the probe and the inference methods
have to be carefully designed and we elaborate them in the
two attack scenarios.

IV. ATTACKING GPU WITH RDMA NIC

In this scenario, we assume a high-speed device, in par-
ticular a discrete GPU, is used by a victim. The adversary
has access to an RDMA NIC on the same machine. For the
attacker to obtain reliable measurement through the RDMA
probe, the processing time of the RDMA request at the server
should be small. Fortunately, this requirement can be fulfilled
readily. For example, 1.3 million ops/sec can be achieved by
an RDMA key-value store on Infiniband [20].

One advantage of the RDMA probe is that it cannot be
interfered by other network traffic, like LAN traffic. A server
usually uses an RDMA NIC to handle RDMA traffic and an
Ethernet NIC to handle LAN traffic, so they are isolated at the
physical layer. During our experiment, we also use separate
NICs. Though RDMA NIC can be configured to handle IP
packets, e.g., through IPoIB [36], this feature is disabled by us
(the default setting). Therefore, no IP traffic would go through
the RDMA NIC.

A. Design of Probe

RDMA supports three types of connections, Reliable Con-
nected (RC), Unreliable Connected (UC), and Unreliable Data-
gram (UD) [37]. Among them, RC resembles TCP protocol,
and RDMA read can be done only on this connection type,
so we assume the attacker probes the I/O delay with RC.
Algorithm 1 overviews the whole probing method. We write
around 400 lines of C code for this RDMA probe.

When RC is set up, a send queue will be created on the
attacker side to send the read requests. Each read request
accesses 4 bytes only. When the number of bytes is large, PCIe
switch may increase the buffer size to ease congestion. When
the number of bytes is less than 4, we found the throughput
and delay remain the same. To keep sampling, the attacker
needs to monitor the send queue and make sure it is non-
empty by continuously adding requests. However, this strategy
might make multiple requests arrive at the I/O switch at the
same time, resulting in inaccurate measurement. We address
this issue by making the requests “mutually exclusive”: we
set a fence (IBV_SEND_FENCE) after each request, holding
the next request to wait for the reply of the prior one.

Algorithm 1: Collection of Delay Sequence with
RDMA
Result: DelaySeq
Alloc SendQueue(withFence), CompletionQueue;
SendQueue.enqueue(a batch of RDMA read

operations);
lastTimestamp = device.getTimeStamp();
while notEnough(DelaySeq) do

wr = CompletionQueue.pop();
DelaySeq.append(wr.timestamp - lastTimestamp);
lastTimestamp = wr.timestamp;
if SendQueue.isAlmostEmpty() then

SendQueue.enqueue(a batch of RDMA read
operations);

end
end

We set the IBV_EXP_CQ_TIMESTAMP flag to the sending
queue in order to collect the hardware timestamps of the
replies, which are stored into the completion queue. The
collected timestamp is much more precise than the timestamp
of CPU (e.g., RDTSCP). The interval between consecutive
hardware timestamps is close to the delay of the request,
because 1) kernel and CPU are bypassed; 2) no congestion
should happen at the sender and receiver NICs due to mutually
exclusive requests; 3) the Infiniband network introduces ultra
low and stable latency (e.g.130 nanosecond from one switch
port to another [38]).

0 13s

200

1.5k

2k

In
te

rv
a
l
(c

y
c
le

s
)

Fig. 2: Delay variance based on the PCIe congestion status.

We found the designed probe can achieve a very high
sampling rate and high sensitivity to congestion. On our
experiment platform, the sampling rate can be as high as
0.77 million points per second (the interval between probes
is around 1.3 microseconds or 206 RDMA NIC cycles) when
the upstream PCIe link is not shared with other devices. When
the PCIe link is busy, as we let the CPU pass a large array
(30,000×30,000 integers) to GPU and read it back, the interval
is increased to 9.6 microseconds or 1,520 RDMA NIC cycles.
As shown in Figure 2, 6 times difference can be observed. The
high entropy embedded within the interval variance enables
fine-grained profiling of the victim device.

A recent work, NetCat [23], carried out an RDMA
Prime+Probe attack against LLC (last level cache) of a server
to infer the victim’s secret. Though our RDMA probe also
touches LLC, what is measured is different from the RDMA

Prime+Probe of NetCat [23]. First, Prime+Probe requires an
eviction set filled with carefully selected memory addresses 2,
but our probe reads fixed 4 bytes only. Second, Prime+Probe
introduces the timing difference of accessing LLC (between
hit and miss) at 100 nanoseconds, but the difference is far
larger in our attack (8.3 microseconds).

B. Attack 1: User-input Inference

We observe that even a keystroke a victim enters, which
introduces fairly small amount of data, is distinguishable under
INVISIPROBE. When a keystroke is entered to a GUI input, a
character will be rendered by GPU. In addition, the UI element
around it, e.g., textbox, will be refreshed. Before the rendering,
CPU passes the character and UI elements from memory to
GPU via PCIe link and issues the rendering commands to
GPU. Though the data volume is small, CPU will try to use
all PCIe lanes to transmit the data, still introducing noticeable
congestion when INVISIPROBE is launched at the same time,
leading to a surge of probe delays, as shown in the top
of Figure 3. In contrast, when the displayed content is not
updated, the CPU-GPU PCIe link will stay “quiet”. Therefore,
INVISIPROBE can infer the keystroke dynamics. To notice,
though the display is refreshed at a constant rate, e.g., 60Hz,
the frequency of data transmission on PCIe and GPU rendering
are not constant.

This attack assumes the rendering is facilitated with the
GPU on the remote server. This feature has been supported
by remote desktop services of Windows [40] and Linux [41],
which can be turned on by changing the system configurations
on the server. Mainstream cloud providers like Amazon EC2
also offered this support in their VMs [42]. Game cloud
providers like Steam Cloud Play started to render games
for users in remote server, which aroused over 94 million
users [43]. When a user is using a resource-constrained device,
e.g., a thin client in an enterprise network, for tasks requiring
GPU acceleration, like browsing using WebGL, gaming, and
data visualization [44], remote GPU acceleration is recom-
mended [45]. We expect this setting will be encountered
more often along with the increased adoption of remote
desktop [46].

In Section VI-B, we evaluate whether INVISIPROBE can
learn when a keystroke occurs and how likely a word typed
by a victim can be inferred. Below we describe the steps.
Inferring keystroke events. By modeling the surge of probe
delays, the occurrences of keystrokes could be detected.
The main problem we need to solve is how to distinguish
keystrokes with other UI updates (e.g., screen transition) from
the delay surge. After analyzing the delay sequences resulted
from a set of keystrokes, we found that any keystroke will
increase the delay of 7 consecutive probes, while other UI
activities rarely exhibit the same pattern (e.g., UI transition
impacts far more probes). According to this observation, we
propose the following method to identify a keystroke:

2Maurice et al. [39] showed Prime+Probe is feasible under addressing
uncertainty, but it is used to construct covert channel.

1) We compute the intervals between all probe requests and
save them into a delay sequence.

2) We set a lower-bound THL and an upper-bound THH

to select the sampling points. These points are likely
to be related to keystrokes and we call them suspected
points. As shown in the bottom of Figure 3, unrelated
sampling points can be filtered out reliably.

3) We use a sliding window of Win readings to scan
the intervals. If there are over K suspected points, we
consider there is a suspected keystroke happening in the
time window. The red stars and blue circles in Figure 3
show the suspected keystrokes.

After empirical analysis, we set the values of THL, THH ,
Win and K to 1000, 3000, 50,000 and 6. Though for a
different machine the delay patterns might be varied (e.g.,
5 might be sufficient for K), the adversary can update the
parameters according to the target machine.
Removing caret. Though the above method produces good
recall of keystroke events, we found the blinking caret in the
textbox is detected as well, as it has a similar impact on our
probe intervals. On the other hand, the blinking caret can be
filtered out due to their unique UI patterns: 1) the blink has
a constant interval; 2) the caret blinks only when the user is
not typing in most applications3.

Specifically, we compute the intervals between the sus-
pected keystrokes and remove the ones with the constant
intervals (e.g., 598 milliseconds or 1193 milliseconds for
Google Chrome, and 403 milliseconds or 793 milliseconds
for gedit). The chances of removing real keystrokes are very
small, as keystroke usually takes a much shorter interval. The
blue circles in Figure 3 show the carets that are successfully
detected.
Recovering word. Though the learnt keystroke events do not
tell which keys are typed, according to prior studies, their
intervals reveal what words are typed [12], [47], [48], based
on a language model. Take English words as an example. In
essence, the attacker can first collect the keystroke timings
about English words from a dictionary words, and then use
Hidden Markov Model (HMM) [49] to build the relationship
between the intervals and the hidden states (i.e., pair of
characters). The transition probabilities between certain states
such as (’i’, ’o’) are adjusted based on their probabilities of
occurring together. The “SPACE” character between words are
detected based on its longer inter-keystroke interval [12]. Then,
the attacker applies Viterbi algorithm [49] to obtain the top n
most likely character sequences given an interval sequence.
The candidate sequences that fail spelling checks are removed
before the result is presented.

C. Attack 2: Webpage Inference

Using GPU to accelerate webpage rendering has become
a standard technique for browsers, like Google Chrome [50],
Mozilla Firefox and Internet Explorer. Take Google Chrome

3We tested 10 applications and only found the caret keeps blinking in
Firefox regardless of typing. The 10 applications are described in Appendix C.

0 13s

Collected raw interval sequence

3k
In

te
rv

a
l
(c

y
c
le

s
)

0 13s

Pre-processed interval sequence and prediction results

3k

In
te

rv
a
l
(c

y
c
le

s
)

Fig. 3: Recovery of keystroke events. The top figure shows the raw delay sequence. The bottom figure shows the sequence
after the pre-processing. The predicted keystrokes are marked with red stars while carets are marked with blue circles.

0 13s

3k

0 13s

3k

In
te

rv
a

l
(c

y
c
le

s
)

0 13s

3k

(a) Collected at RDMA NIC, when a
victim visits three different websites
(www.android.com, www.12306.cn,
www.pptv.com).

0 6.5s

3k

0 6.5s

3k

In
te

rv
a
l
(c

y
c
le

s
)

0 6.5s

Time

3k

(b) Collected at RDMA NIC, when a victim
trains three different ML models (DCGAN,
RNN-LSTM, AutoEncoder).

0 10s

30

0 10s

30

In
te

rv
a

l
(u

s
)

0 10s

30

(c) Collected at NVMe SSD, when a victim
visits three different websites (sohu.com,
tmall.com, baidu.com).

Fig. 4: Interval sequences in the three attacks.

as an example. The renderer process of CPU rasterizes (i.e.,
converts the geometry description of the image to pixel de-
scription) the webpage and pushes the data to the CPU mem-
ory shared with GPU. The GPU process copies the data from
CPU memory to the GPU memory and invokes OpenGL [50]
APIs to draw the bitmaps region-by-region. Lastly, the Chrome
compositor stitches the rendered images together to draw the
whole webpage using GPU. Initially, a website needs to call
WebGL APIs [51] to direct Google Chrome to use GPU for
rendering. But recently, GPU acceleration is configured as the
default setting in Google Chrome [52]. Since the data related
to the webpage has to be moved from CPU to GPU, PCIe
congestion can be introduced as well when INVISIPROBE is
launched.

We speculate visiting a webpage could yield a unique
delay sequence, because it usually triggers downloading many
web files (e.g., JavaScript, HTML and image files) from
different web origins. The browser executes each file after
it is downloaded instead of waiting for all of them [53]. As
such, the data transmission between CPU to GPU becomes

intermittent, resulting in distinguishable I/O patterns. Figure 4a
(a) compares the sequences when visiting 3 different web-
pages. Based on the above observation, we take the entire
delay sequence and classify it.

In Section VI-C, we evaluate INVISIPROBE in a close-
world setting: we profile 100 webpages ahead and examine
if INVISIPROBE can identify the webpage being visited.

Classifying delay sequence. Loading the same webpage might
observe different delay sequences due to network conditions,
OS events, and dynamic content (e.g., online advertisement).
To achieve robust classification on the ever-changing delay
sequences, we leverage LSTM (Long short-term memory),
an RNN model family capable of handling complex time-
series [54], [55]. LSTM is able to track long-term dependen-
cies in a sequence, which is ideal for our problem setting, as
file downloading events can span the whole lifetime of web-
page rendering. In particular, we choose AttBLSTM (Attention-
Based Bidirectional LSTM) model [13] under the LSTM
family to classify our delay sequence. AttBLSTM considers
both forward and backward dependencies and uses an attention

h

e

h

h

h

e

h

h

h

e

h

h

+

...

...

x x x

Output
Layer

Attention
Layer

LSTM

Embedding
Layer

Input
Layer

y

Fig. 5: AttBLSTM Model for classifying webpage visits.

layer to focus on the elements that have a decisive role in the
sequence. It outperforms the vanilla LSTM model especially
when the number of sequence elements (e.g., downloaded files
in our case) is not fixed [56]. Figure 5 shows the structure of
our classifier based on AttBLSTM.

While AttBLSTM can directly process the delay sequence,
we found the performance is unsatisfying as each sequence has
a huge number of data points, ranging from 1 million to 10
million. Therefore, we add a pre-processing layer before the
input layer of AttBLSTM. We split the sequence into windows
and each window contains Win intervals with no overlapping
with other windows. Then we compute the frequency of each
interval value and aggregate them into three buckets [0−100],
[100−500] and [500−]. As a result, each window is converted
into a vector of three frequency buckets.

After processing the input, the LSTM layer learns the
predictive features from the sequence and the attention layer
captures the dependencies between the sequence of features
and the output. The embedding layer after that produces a
vector of 64 numerical values. Finally, the fully-connected
layer converts the embedding vector into a classification vector
with the size the same as the number of profiled webpages.
The soft-max layer assigns probabilities to each class, and the
one with the highest probability is returned to the adversary.

Through this pipeline, we found that a webpage can be
classified at high accuracy, but it also requires many sequences
of a webpage to be collected beforehand for training. If
removing the layers after the embedding layer, we can turn
the AttBLSTM model into an embedding model and classify a
webpage without retraining. For instance, we can generate the
embedding (E1) of one sequence (S1) of a webpage W with
the pre-trained model. For a new sequence S2 encountered
in the testing stage, we can generate its embedding E2 and
compute its distance to E1 (Cosine distance) and classify it
into W if the distance is lower than a threshold. We adjust
the pre-processing step by using the average delay as the
feature for each time window instead of the three bucketed
frequencies. We call the two settings classification mode and

embedding mode.

D. Attack 3: Machine-learning Model Inference

Nowadays, GPU is extensively used to train machine-
learning models. The structure of a machine-learning model
can be considered as “intellectual property” (IP) [57], as
many companies have invested a large amount of resources
to develop it. In this attack, we consider the adversary is
interested in learning the model structure for IP infringement
or use the information to improve the adversarial attacks [57].
This attack setting has been studied by a number of works
recently (surveyed in Section VIII), but none of them exploited
the PCIe congestion side-channel.

More specifically, we consider the structure of a DNN (Deep
Neural Network) model has been decided by a developer
and it is trained using TensorFlow on the targeted server.
When the training is initialized, TensorFlow compiles the
model structure to a Tensorflow graph where each node is
a TensorFlow operation (or op). For each op in the graph, the
graph executor on CPU will transfer a batch of data to GPU
memory as initialization. Thus, there is data movement from
CPU to GPU through PCIe link [58] and different ops could
introduce different data movement patterns, and our goal is
to infer the op sequence, which can be leveraged to recover
the secret model structure. Though the valid combinations of
ops are virtually infinite, only a few ops can be chosen, in-
cluding Conv (convolution), FC (fully-connected), BN (batch
normalization), ReLU, Pool, and etc. As shown in a recent
work [59], those ops all introduce unique PCIe usage patterns,
and their combination may result in a unique delay sequence.

Similar to Attack 2, the attacker probes the shared PCIe
link to obtain a delay sequence. Then she uses the same
AttBLSTM model described in Section IV-C to classify the
whole delay sequence into a model structure that has been
profiled. In evaluation (Section VI-D), we profiled 10 models
and classifies a sequence to one of them.

V. ATTACKING NIC WITH NVME SSD

In this scenario, we show that even when a low-speed
device, in particular an Ethernet NIC, is used by the victim,
the sensitive information can be leaked under INVISIPROBE.
Similar to the prior section, we describe the probe design and
a concrete attack under this scenario.

A. Design of Probe

When attacking GPU using NIC, the congestion is mainly
caused by the GPU used by the victim, and the I/O delay is
measured by the RDMA NIC. In contrast, the attacker in this
scenario uses her device (i.e., NVMe SSD) to cause congestion
and measure delay together, because the data volume intro-
duced by the victim’s NIC alone might be limited. Ethernet
NICs that support 10Mbps, 100Mbps, 1Gbps data rates are
usually connected to PCH via a single PCIe lane [60] 4. A
PCH can forward 4GB/s data but a 1Gbps NIC only introduces
0.125GB/s data, filling 3.1% bandwidth of PCH at maximum.

4Higher-speed NICs, like 10Gbps NIC, are rarely plugged to PCH.

Although NVMe SSDs can generate a large amount of
traffic in a small duration to fill the bandwidth gap, the
latency of a single request has a large variance, because
SSDs run many internal jobs, e.g., garbage collection and
anti-wearing [61]. To address the problem, we use pipelined
requests instead of mutually exclusive requests with a fence.
Specifically, the attacker always fills up the send queue of her
NVMe SSD, so the SSD will be busy sending responses to
the PCIe link. The attacker does not measure the latency on
each request, but measure the interval between consecutive
response completions, which eliminates the variance caused
by SSD internal jobs.

We experimented with numerous settings of data trans-
mission, and found that reading 4KB (8 LBAs, 512 bytes
each LBA) at a fixed position in each request can produce
the desired traffic volume and maintain a high and stable
sampling rate. As a result, the attacker can issue more than
812K read operations per second (IOPS) that generates about
3.1 GB/s throughput. On top of this throughput, the Ethernet
NIC (x1 lane) can easily saturate the upstream of the PCH (x4
lane). Besides, we investigated three reading orders of NVMe
SSD, including random read, sequential read and read from a
constant block, and found constant read yields the most stable
delays.

To precisely measure the NVMe SSD I/O interval, we
use Storage Performance Development Kit (SPDK) [33], a
toolkit for low latency kernel bypass I/O. SPDK allocates a
pair of send queues and completion queues, which are shared
between the user’s process and the device. When there is an
I/O operation launched by the process to the NVMe SSD,
SPDK generates an item in the send queue containing all
the parameters about the request, and then notifies the SSD
via door bell, which writes a memory-mapped register of the
SSD. The controller of the SSD will immediately fetch the
request from the send queue and process it. After that, the
result will be written to a predefined memory location and an
item will be saved in the completion queue. Developer can
get the completion information by a SPDK procedure called
(spdk_nvme_qpair_process_completions()) . The
algorithm of this NVMe SSD probe is shown by Algorithm 2.
We write about 200 lines of C code for this NVMe SSD probe.

B. Attack 4: Webpage Inference with NVMe SSD

Among the three attacks demonstrated in Section IV, the at-
tack about webpage inference is more relevant in this scenario,
as users’ activities on the other two do not directly involve
NIC. Similar to Attack 2, we collected a delay sequence
for each webpage visit, and classify it using the AttBLSTM
model. During pre-processing, we again split the sequence
into windows, but this time we count the maximum delay in
the window as a feature instead of using the three frequency
buckets, because the delays do not have the same distribution.
Other statistical features, like average delay, lead to a similar
result, so we use the maximum delay for simplicity.

Algorithm 2: Collection of Intervals with NVMe SSD
Result: IntervalSeq
Alloc SendQueue, CompletionQueue;
SendQueue.enqueue(a batch of read operation);
lastTimestamp = RDTSCP();
while notEnough(IntervalSeq) do

while isEmpty(CompletionQueue) do
;

end
currentTime = RDTSCP();
CompletionQueue.dequeue();
IntervalSeq.append(currentTime - lastTimestamp);
lastTimestamp = currentTime;
if SendQueue.isAlmostEmpty() then

SendQueue.enqueue(a batch of read operation);
end

end

VI. EVALUATION

In this Section, we evaluate the effectiveness of Attack 1-4.
In Section VI-A, we describe the platform used for experiment.
Section VI-B, VI-C, VI-D, VI-E report the results for each
attack. Section VI-F describes the evaluation on a public cloud.

A. Experiment Platform

We use a regular desktop PC and a server as the experiment
environment, which is similar to prior works in studying
remote side-channel attacks [23], [24], except that we use one
less desktop PC because we assume the victim’s application
directly runs on the server. The specifications of the machines
are shown in Table I.

In Figure 1, we give an abstraction of PCIe topology on a
machine. Here we elaborate on the topology (also illustrated
in Figure 6) on our server, which is more complex. Though the
CPU only has 3 PCIe interfaces, the PCIe switch (PEX 8747
PCIe) and the 8 I/O multiplexers (IT8898 chips) expand the
support to 4 PCIe x16 devices at full speed. Two PCIe devices
have high chances to share the same switch (e.g., plugged into
Slot 3 and Slot 5 to have x16 PCIe link).

The RDMA NIC of the server has a direct Infiniband
connection to the PC’s RDMA NIC. Though in data centers,
there is usually an Infiniband switch between two of its
machines to enable RDMA connection, we do not introduce
the switch into the experiment platform because it is too
expensive (over 240,000 US dollars [62]). On the other hand,
the latency with and without the Infiniband switch are similar
(e.g., extra 130 nanoseconds [38]).

B. User-input Inference with RDMA NIC

We use gedit and Google Chrome (version 79.0.3945.88)
to simulate the applications that receive the victim’s input.
Two webpages, Google login page (accounts.google.
com/ServiceLogin/signinchooser) and Amazon lo-
gin page (www.amazon.com/ap/signin), are tested on

TABLE I: Specification of the evaluation platform.

Server PC
CPU Intel Xeon Platinum 8260 Intel Core i3 8100

Motherboard Supermicro X11SPA-TF MSI B360
Memory 64G 32G

RDMA NIC Mellanox MCX556A Mellanox MCX455A
Ethernet NIC Intel I-210 Intel I-219-V

GPU Nvidia 1080 Ti -
NVMe SSD - GP-ASM2NE6100TTTD

OS Ubuntu 18.04 (4.15.0-112) Ubuntu 18.04 (5.0.0-31)

Google Chrome. The victim types in the text on the ap-
plications on the server through a remote desktop software
TigerVNC 1.7.0, and the attacker recovers keystroke events
at her PC side. The remote GPU acceleration is enabled by
configuring the X display name field of TigerVNC to 0.
Inference of keystroke events. We first evaluate the inference
accuracy of the victim’s keystroke events under INVISIPROBE.
We recruit 1 volunteer to type in an English article, containing
480 characters. We align the timeline of the actual keystrokes
and the detected ones, and count the false positives (the
keystrokes detected by mistakes, or FP) and false negatives
(the missed keystrokes, or FN). Assume the number of true
positives (all real keystrokes) is C, false-positive rate (FPR)
and false-negative rate (FNR) are defined as FP

C and FN
C .

The result shows all events can be identified at the right
time, resulting in 0% FNR and FPR. However, without
removing the blinking caret, some of the detected keystrokes
are false positives, resulting in 5.88% FPR (30 caret blinkings).
After removing the carets based on the heuristics described in
Section IV, we found FPR drops to 1.03% (5 carets recognized
as keystrokes), but FNR is still 0%. Table II lists the accuracy
(i.e., 1-FPR).

TABLE II: Accuracy of recovering keystroke events.

Keystroke & Caret Events w/o Caret Removal w/ Caret Removal
100% 94.18% 98.97%

Word recovery. We construct an HMM by following the steps
in [12] with a ten-letter alphabet (“etaoinshrd”). There are 100
possible transitions between a pair of letters in the alphabet
and we collect 40 keystroke intervals for each pair with a
volunteer, and use the intervals to train the HMM. Then we
draw the first 43 words from a 1000-words dictionary [63]
that are composed of our alphabet as the words to be tested.
Appendix D lists the selected words. Each word was typed 3

Fig. 6: Part of the block diagram of Supermicro X11-SPA TF.

times by another volunteer and the recovered keystroke timing
by the prior stage was sent to the HMM model for the word
inference. We found the real words are highly ranked among
the 1000 words in the dictionary after sorted by HMM: 66.7%
ranked in the top 10 and 95.3% among the top 50. Our result
is comparable to [12], which tested 39 words from a 2103-
words dictionary, and the top-10 accuracy and top-50 accuracy
are 40% and 86%.

TABLE III: Paramters of AttBLSTM model.

Attack
Paramter Web-GPU ML-GPU Web-NIC

Hidden Size 48 48 64
Attention Size 64 64 64

Embedding Size 64 48 64
Learning Rate 0.022 0.016 0.016

LR Decay 0.992 0.995 0.992
Weight Decay 0.0003 0.0006 0.0004

Dropout 0.16 0.3 0.18

C. Webpage Inference with RDMA NIC
We select the Alexa top 100 website homepages [64]5 as

the webpages targeted by the attacker. The scale of our data is
comparable to prior works that infer webpage visits through
side-channels, e.g., 100 websites for [65], [66]. We use the
top 100 websites to demonstrate attack effectiveness. In other
words, an attacker targeting a specific victim can adjust the
list to include websites that reflect the victim’s preferences,
political views, etc.

Each webpage was visited 150 times using Google Chrome
and each visit lasts 8 seconds. In total 15,000 delay sequences
were collected. We carried out cross-validation by splitting
the data into training and testing by 85% and 15% randomly.
We train the AttBLSTM model for 400 iterations with the
parameters shown in the second column of Table III.
Classification mode. The evaluation metrics are similar to
Section VI-B in that we measure the accuracy of the top-N
candidates against the 100 tested webpages. We found the top-
1 accuracy can achieve 96.31%, i.e., 96.31% sequences can
be correctly classified with the top choice from our model,
while the top-3 accuracy can achieve 99.16%. We analyzed
the mis-classified sequence and found that the main reason is
the unstable network condition for some visits.
Embedding mode. We collected 100 new webpages (termed
Wnew) to test this mode. The trained AttBLSTM model is the
same as the one used for the classification mode. For each
webpage in Wnew, we first collect 1 delay sequence (ei) and
generated a set of embedding vectors (termed Enew). Then,
we collect another delay sequence (e′i) for every webpage
in Wnew, and compute its Cosine distance to every vector
in Enew. If the distance between ei and e′i under the same
webpage is under the threshold (0.474) while the distances
between ei and all other embedding vectors are larger, we
consider it as a true positive. In the end, 90.77% accuracy
can be achieved on Wnew.

5Due to that our machine is located in China, we selected the top 100
Chinese websites, which are not blocked by the Great Firewall.

D. Model Inference with RDMA NIC

We choose ten popular machine-learning models (8 DNN
and 2 simple models) and collect their delay sequences for
evaluation. Each model is trained for 100 iterations and each
iteration uses 64 images from MNIST [67] in a batch. In
total 1,000 sequences are collected, and the adversary’s goal
is to learn which model it corresponds to. Table IV shows the
models we use for evaluation. The third column of Table III
shows the parameters of AttBLSTM for this task.

TABLE IV: Machine-learning models evaluated under IN-
VISIPROBE.

Model Description
FC A simple model with only 1 FC layer

CPF A model with Conv-Pool-FC layers
CPCPF A model with Conv-Pool-Conv-Pool-FC layers

DCGAN [68] Deep Convolutional GAN
RNN-LSTM [69] RNN model with LSTM layer
AutoEncoder [69] CNN model with encoder and decoder

RNN-Attention [70] RNN model with Attention layer
Resnet-18 [71] A widely used CNN model for image recognition

Inception-v3 [72] A widely used CNN model for image recognition
Regression A simple logistic regression model

Similar to the setting of Section VI-C, we split the se-
quences to 85% training and 15% testing, and evaluate the top-
N accuracy. The result shows the top-1 accuracy can achieve
100% for all models. We speculate such high accuracy is
caused by the long execution time for each iteration, which
leaves abundant information to be used by INVISIPROBE.

We also attempted to infer the layers composing a DNN
model from a delay sequence, however, we are unable to obtain
a satisfying result, because segmenting the sequence by layer
is very difficult. Appendix B elaborates this attempt.

E. Webpage Inference with NVMe SSD

In this attack, we use the same set of webpages (Alexa top
100) and experiment setting (85% training and 15% testing)
as Attack 2 (Section VI-C), except that the attacker collects
delay sequence from NVMe SSD. The last column of Table III
shows the parameters of AttBLSTM for this task.

Overall, the top-1 accuracy reaches 93.29%, and top-3
accuracy reaches 98.71% for the classification mode. The
accuracy is comparable to that of Attack 2, though a slight
drop is observed. We found the main cause of the errors is
also the unstable network conditions.

Classification Model Top-1 Acc. Top-3 Acc. Embedding Acc.
3-layer fully-connected 48.92% 64.44% 67.26%

LSTM 84.25 % 94.00% 83.00%
Bi-directional LSTM 87.38% 96.10% 83.46%

AttBLSTM 93.29% 98.71% 88.17%

TABLE V: Accuracy (Acc.) of Attack 4 with different classi-
fication models.

Comparison between inference models. Comparing with a
normal neural network model, like a fully-connected model,

AttBLSTM adds three features, including long-sequence learn-
ing with LSTM, bi-directional sequence processing, and at-
tention mechanism. Here we rerun the experiment of Attack
4 by stripping off each feature, in order to learn how much
performance gain is brought by them. Table V shows the
comparison. We use the 3-layer fully-connected model as the
baseline, and LSTM significantly improves the performance
(Top-1 accuracy raised from 48.92% to 84.25%), indicating
the recurrent models are much better positioned to handle
this task. BLSTM raises the Top-1 accuracy over LSTM by
3.13% and AttBLSTM improves over BLSTM by 5.91%,
suggesting these two features are necessary. The trend of Top-
3 classification accuracy and embedding accuracy are similar.
Performance gain with kernel-bypass. We assume the
kernel-bypass driver (e.g., SPDK) has been installed on the
server for the attack leveraging NVMe SSD, as described in
Section III-B. The kernel-bypass driver is expected to help
the attack obtain a stable measurement of delays, and here we
evaluate this claim.

In particular, we rerun Attack 4 but use the standard system
calls to collect the delays. Specifically, sys_read system call
is repeatedly invoked to read a 4K Block from a file at random
positions. To force the OS to fetch data from NVMe disk
without using buffers, we open the file in O_DIRECT mode.
We look into the quality of sampled delays, and the result
proves our assumption. Table VI compares the average IOPS
(I/O operations per second) by the probe when one webpage
is tested, and it shows without SPDK, much fewer samples
can be collected (57,603 compared to 839,546). The reason is
that the context switching between ring 0 and ring 3 wastes
many CPU cycles. Besides, more random noise is introduced
with sys_read: the standard deviation of the collected delay
becomes 71 microseconds, while it is only 0.22 microseconds
for the SPDK case. Regarding the accuracy of Attack 4, it is
dropped to 90.13% and 96.53% for top-1 and top-3, shown in
Table VI.

IOPS Top-1 Acc. Top-3 Acc.
SPDK 839,546 93.29% 98.71%

sys_read 57,603 90.13% 96.53%
Alibaba Cloud with io_uring 12,757 91.02% 97.77%

TABLE VI: IOPS of different probe designs and inference
accuracy for Attack 4.

F. Attack on Public Cloud

The prior experiments are done in a lab environment. To
evaluate the practical impact of INVISIPROBE, we implement
Attack 4 in the Alibaba cloud. We did not implement Attack
1-3 because we cannot find a public cloud matching the
attack condition, that two VMs with RDMA connection can
be rented. Tsai et al. [24] tested their RDMA attack in
CloudLab [73], but we found CloudLab uses AMD CPUs,
which uses I/O die inside the CPU to forward PCIe traffic.
Specifically, AMD systems do not break CPU’s PCIe port into
multiple ports with a switch. Instead, they use an I/O chip to
connect all PCIe ports, cores and memory controllers together,

in which case a PCIe port not only conflict with other ports
but also cores and memories, producing much more noises.

One interesting observation we gain from inspecting the
public cloud is that I/O virtualization is extensively leveraged.
In this case, cloud vendors do not use the PCH to serve
SSDs and NICs together. I/O devices including SSDs, NICs
are all virtualized by hardwares, which are called Nitro Cards
by Amazon [74] and MOC Cards by Alibaba [75]. We call
them vcard collectively. The vcard rather than PCH act as an
I/O switch to handle PCIe traffic. Particular for Alibaba, a
cloud server has only one MoC, no matter how many devices
it virtualizes. Therefore, similar to PCH, vcard becomes the
bottleneck for PCIe traffic.

As for the end-to-end attack, we rented an instance (type
ecs.ebmc6.26xlarge) from Alibaba cloud and launched
Attack 4. We run the attacker’s code on the instance to access
NVMe SSD and the webpages are visited by Google Chrome
on the instance. We found directly running the attack code
is infeasible, because the virtualized SSD does not support
SPDK. Fortunately, the OS kernel of the instance supports
io_uring, a kernel-bypass framework provided by Linux.
Therefore, we substitute the part relying on SPDK with
io_uring and run the attack code. It turns out top-1 accuracy
and top-3 accuracy are dropped to 91.02% and 97.77%, as
shown in Table VI. The main reason is that the sampling
quality of INVISIPROBE degrades on vcard: only 12,757 IOPS
is produced. Yet, high attack effectiveness is demonstrated.

VII. DISCUSSION

A. Potential Mitigation

The evaluation result suggests INVISIPROBE can harm
another user’s security and privacy sharing a machine. On
the other hand, defending against INVISIPROBE is quite chal-
lenging. Other remote cache side-channel attacks [23], [24]
can be mitigated by isolation (e.g., LLC partitioning [23] and
separating protection domains [24]). However, simply isolating
traffic between devices might eliminate the benefit brought by
PCIe. Below we discuss a few directions.
Blocking high-resolution clock instructions. Assuming the
data center operator can decide what instructions are available
to the upper-layer applications, i.e., the probe code written
by the attacker, restricting the access to those instructions
might deter INVISIPROBE. For instance, when using NIC to
attack GPU, the hardware clock has to be obtained by the
adversary by setting flags in the RDMA read queue. When
using NVMe SSD to attack NIC, RDTSCP needs to be invoked
by the adversary. However, legitimate applications also use
those primitives to measure their performance. Even if certain
instructions can be banned, e.g., RDTSCP, the attacker can
switch to other instructions, e.g., using multiple threads and
monitoring the interrupts (“Low-Requirement Interrupt Timing
Attack” of [47]).
Reducing the delay variance. As the attacker can construct
a probe quite sensitive to the delays caused by congestion, an-
other solution is to reduce the delay variance, so the congestion

states of the PCIe link can be concealed. One can increase
the capacity of PCIe links, but doing so would incur high
upgrading cost and there is no guarantee that congestion will
never be triggered. Introducing noises, i.e., increasing delays,
would confuse the attacker, but the extra overhead could be
non-negligible, especially to scenarios that are delay-sensitive,
e.g., training deep neural networks.
Detecting the suspicious probe requests. The adversary
needs to maintain a non-empty queue of probe requests to
keep collecting measurement data for the whole life-cycle of
a victim operation. Blocking probe request individually is not
a feasible solution, as reading a small chunk of memory by
RDMA has legitimate use cases like distributed locks [76].
A more viable solution could be letting a security application
on I/O switch to inspect the request sequence, identify the
anomalies, and notify the data center operators. In fact, a
few recent works have shown that programmable network
switches can be leveraged to detect DDoS attacks [77], [78].
However, the current hardware of I/O switch does not support
this idea, i.e., not programmable. As revealed by our end-
to-end experiment (Section VI-F), I/O switch is virtualized by
some public cloud. Hence, an alternative approach is to deploy
the defense on the vcard, and we are discussing this approach
with cloud providers like Alibaba.

To notice, though processor vendors like Intel provide
counters like PCM [79] to monitor PCIe bandwidth, it covers
PCIe stop inside the chip only. What happens at the PCIe
switch is oblivious to those counters, so the congestion caused
by INVISIPROBE cannot be detected.
Better QoS on I/O switch. Though programming I/O switch
to detect INVISIPROBE might be infeasible now due to the
hardware restrictions, improving the QoS logic of I/O switch to
better serve legitimate applications might deter INVISIPROBE.
For example, by prioritizing I/O devices of high IOPS (I/O per
second), the switch can guarantee relatively stable and lower
delay on those devices, which reduces the inference accuracy
of INVISIPROBE. PCIe congestion has been studied in PCIe
fabric and a few congestion-aware models were proposed [29],
[30]. Within the PCIe standard, virtual channel [80] aims
at a similar goal, by mapping dedicated physical resources
like buffers to high-priority transactions, eliminating resource
conflicts with the low-priority traffic. We plan to investigate
whether they could thwart INVISIPROBE and the follow-up
counterattack in the future.

B. PCIe fabric

Resource disaggregation is a general trend for data centers
and cloud [81]. In a fully resource-disaggregated rack, I/O
devices are all connected to PCIe switches, which constitutes
a PCIe fabric, as shown by Figure 7. CPUs also connect to the
PCIe fabric as nodes. In this case, the attack surface will be
largely broadened: all I/O devices in the rack will be exposed
to attackers for probing. So far, there lacks comprehensive
security analysis of PCIe fabric and we believe this is an urgent
topic for the security community.

CPU #0 ...

Root
Complex

CPU #n

Root
Complex

PCIe
Switch

PCIe
Switch

GPU
NVME

SSD
GPU

Memory Memory

......

fabric

Fig. 7: PCIe fabric.

C. Limitations

User-input inference. We aim to accurately infer the words
typed by a victim in Attack 1, though there is still room for
improvement (e.g., top-10 accuracy is 66.7%). Future work
could evaluate models other than HMM and use the context
to filter the inferred words. Given only the coarse-grained
feature, say keystroke timing, is available to the adversary,
INVISIPROBE cannot directly learn more sensitive information
like password and credit card numbers. Still, we believe the
word recovery example has demonstrated that PCIe congestion
side-channel should be mitigated.
Webpage inference. For Attack 2 and 4, we classified 100
webpages in both scenarios, which might be considered as a
small dataset. The main reason is that data collection is time-
consuming: every visit costs 10 seconds and each webpage
is visited repeatedly for 150 times. We plan to increase the
dataset in the future by running multiple machine instances.
On the other hand, as our dataset covers webpages of a
variety of categories, we believe the result is representative.
We also assume a close-world setting where the victim visits
the webpages that have been profiled. As a next step, we will
evaluate whether the victim is also vulnerable under the open-
world setting.
Model inference. For Attack 3, INVISIPROBE can tell which
model a victim is executing but the layers cannot be inferred
separately. We acknowledge this cannot fully reveal the model
structure. On the other hand, if the attacker can profile a large
number of models ahead, and compute the distance between a
delay sequence to the profiles, she might find a similar model
structure, which still helps her attempt in IP infringement and
adversarial attacks. We will investigate this option.
Combinations of attack and victim devices. We tested two
device combinations. Potentially, other device combinations
might be vulnerable as well, but due to the high cost of
testing one combination, we leave the exploration of other
pairs as future work. We also plan to investigate principled
methodologies to reduce the search space of vulnerable pairs.
Public cloud setting. Since INVISIPROBE is implemented
based on the features and ISA of Intel CPUs, the public

CPU Cores

L3 Cache

Victim Machine (Our Attack & NetCat)

Root
Complex

PCIe Switch

SRAM
(cache)

RDMA
NIC

SRAM
(cache)

RDMA
NIC

Attack
Machine

Victim
Machine
(Pythia)

RDMA
NIC

RDMA
NIC

NetCat

Our
Attack

Pythia

Fig. 8: Comparison between Pythia, NetCat and our attack.
Shaded parts show where the attack is focusing on.

cloud supporting RDMA, in particular CloudLab, cannot be
evaluated against, because it only has AMD CPUs. We leave
the attack implementation AMD platforms as a future work.
Single-CPU setting. Though INVISIPROBE is expected to be
used as a cross-CPU attack vector, e.g., in a full disaggregated
server rack, so far, we only evaluated INVISIPROBE under
the single-CPU setting because our motherboard only has
one CPU slot. We plan to evaluate INVISIPROBE under the
cross-CPU setting with a new motherboard, e.g., Supermicro
X11DPH-T.
PCIe topology. In evaluation, we assume the adversary knows
the PCIe topology of the targeted machine, and then selects
attacker and victim peripheral devices accordingly. When
the information is unavailable, the attacker would need to
infer which victim device shares the I/O switch. This task is
similar as VM co-residency attack [82], in which the adversary
leverages side-channels to determine when her VM shares a
physical machine with another victim VM. The probing delays
observed by the adversary might fulfill this task, and we plan
to validate this hypothesis.

VIII. RELATED WORKS

Side-channel attacks in data center. Recently, a few works
studied how RDMA can be exploited to break the confiden-
tiality of machines/programs in a data center with cache-based
side-channel attacks. In the attack named NetCat [23], Kurth et
al. showed that an attacker can remotely Prime+Probe the LLC
of the victim machine with the help of RDMA NICs and
Intel’s special cache mechanism named DDIO (Data-Direct
I/O). The attacker is able to infer the memory access pattern
of the victim machine, resulting in consequences like password
leakages. In the attack named Pythia [24], Tsai et al. found
that Evict+Reload can be launched against metadata stored in
the SRAM on RDMA NIC. With this attack, other RDMA
nodes’ access patterns can be inferred.

Our attacks explore another direction to launch attacks on
RDMA NICs. The two literature [23], [24] focused on cache
timing on host CPU and NICs respectively. Our attacks focus
on timing related to PCIe links between host CPU and NICs.
Figure 8 shows the comparison.

Security implications of bandwidth contention. Previous
works have shown bandwidth contention can be exploited for
side-channel and covert-channel for attacks. Hu et al. [83],
[84] and Gray et al. [85], [86] studied the covert channels
based on bus/cache contention between VMs managed by
VAX security kernel. Wu et al. investigated a similar attack
in the contemporary public cloud environment [87]. DRAMA
exploits the DRAM row buffers that are shared in multipro-
cessor systems for cross-CPU attacks [88]. Irazoqui et al. also
conducted cross-CPU attacks on the CPU interconnect [89].
None of the prior works investigated the issues on the high-
speed I/O protocols like PCIe, and we made the first attempt.
Keystroke inference. Keystroke inference was studied based
on the network communication patterns [90]. Following that,
a number of works studied how information leaked from
software and hardware can be exploited for the same purpose.
For instance, Zhang et al. [12] proposed that the pattern of
ESP register value of a thread can be used as fingerprints
of keystroke events. Schwarz et al. proposed KeyDrown [47]
showing 1) timing attack on keyboard interrupt and 2) cache
attack on the interrupt handler in the kernel can lead to
keystroke inference. Wang et al. showed that by launching
cache-based side-channel attacks against graphic libraries, the
same goal can be achieved [48]. INVISIPROBE reveals a new
remote side-channel for keystroke inference.
Website inference. When the adversary is able to eavesdrop
the traffic between the victim user and a remote entity, even if
the traffic is encrypted, which website might is visited can still
be inferred, based on packet sizes and time intervals [91]–[95].
As more and more browsers choose to render webpages in
the GPU, which webpage is visited can be recovered through
GPU-based side-channel, in memory residue, access patterns
and performance counters [25], [65], [96]. Besides, cache side-
channel attacks have also been found effective for website
inference [66], [97].
Stealing machine-learning model. As the machine-learning
model structure can be considered as a secret, recently a
number of works studied how it can be inferred with side-
channel attacks. The exploited side-channels include power
consumption [98]–[100], CPU cache [101]–[103] and GPU
resource contention [25], [26]. The one closest to our work
snoops PCIe bus [59]. The attacker needs physical access to
the edge device to obtain such information. Our adversary can
be remote.

IX. CONCLUSION

PCIe congestion resulted from the insufficient forwarding
capability of I/O switches introduces I/O delays to a connected
device. When exploited by an attacker, who intentionally
introduces PCIe congestion, sensitive user activities on a
device can be inferred. We identified four attacks in two
scenarios (using RDMA NIC to attack GPU and using NVMe
SSD to attack NIC), showing sensitive information like the
keystroke timings, webpage visits, trained machine-learning
models can be inferred at high accuracy. We call the awareness

of server manufacturers and the security community, and our
study can serve as the motivation to design security-enhanced
PCIe implementations.

X. ACKNOWLEDGEMENT

We thank the valuable comments from the anonymous re-
viewers, who have guided us to significantly improve the paper
from its initial version. The authors from Fudan University are
supported by NSFC 61802068 and Shanghai Sailing Program
18YF1402200.

REFERENCES

[1] “The three most common ethernet speeds,” https://smallbusiness.chro
n.com/three-common-ethernet-speeds-69375.html, accessed: 2020-02-
11.

[2] “Nvme ssds: Everything you need to know about this insanely fast stor-
age,” https://www.pcworld.com/article/2899351/everything-you-need-t
o-know-about-nvme.html, accessed: 2020-02-11.

[3] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding pcie performance for end
host networking,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 327–341.

[4] “Pcie 3.0 x8 vs. x16: Does it impact gpu performance?”
https://www.gamersnexus.net/guides/2488-pci-e-3-x8-vs-x16-per
formance-impact-on-gpus, accessed: 2020-02-11.

[5] “2nd generation intel xeon scalable processors with intel c620 series
chipsets (purley refresh),” https://www.intel.com/content/www/us/en/
design/products-and-solutions/processors-and-chipsets/cascade-lake/
2nd-gen-intel-xeon-scalable-processors.html, accessed: 2020-02-29.

[6] “Tyan thunder hx ft77db7109,” https://www.tyan.com/Barebones FT7
7DB7109 B7109F77DV14HR-8X-2T-F, accessed: 2020-02-20.

[7] A. Burnes, “Introducing NVIDIA RTX IO,” https://www.nvidia.com
/en-us/geforce/news/rtx-io-gpu-accelerated-storage-technology/, 2020,
[Online; accessed 18-December-2020].

[8] L. Yin, X. Chen, Z. Qin, Z. Zhang, J. Feng, and D. Li, “An experimental
perspective for computation-efficient neural networks training,” in
Conference on Advanced Computer Architecture. Springer, 2018, pp.
168–178.

[9] R. Budruk, “Pci express basics,” in PCI-SIG Developers Conference,
2007.

[10] W. Sun, L. Xu, S. Elbaum, and D. Zhao, “Model-agnostic and efficient
exploration of numerical state space of real-world TCP congestion
control implementations,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 719–734.

[11] S. Jero, M. E. Hoque, D. R. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in tcp congestion control using a model-
guided approach.” in ANRW, 2018, p. 95.

[12] K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems,” in USENIX Security Symposium,
vol. 20, 2009, p. 23.

[13] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-
based bidirectional long short-term memory networks for relation
classification,” in Proceedings of the 54th annual meeting of the
association for computational linguistics (volume 2: Short papers),
2016, pp. 207–212.

[14] “Intel pcie introduction,” https://www.intel.com/content/www/us/en/io
/pci-express/pci-express-architecture-general.html, accessed: 2020-02-
29.

[15] “Down to the tlp: How pci express devices talk,” http://xillybus.com
/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1, accessed: 2020-
02-11.

[16] “8th generation intel core processor family and intel xeon processor
e-2100m family (coffee lake h),” https://www.intel.com/content/www/
us/en/design/products-and-solutions/processors-and-chipsets/coffee-l
ake-h/overview.html, accessed: 2020-02-29.

[17] T. Shanley, InfiniBand network architecture. Addison-Wesley Profes-
sional, 2003.

[18] M. Beck and M. Kagan, “Performance evaluation of the rdma over
ethernet (roce) standard in enterprise data centers infrastructure,” in
Proceedings of the 3rd Workshop on Data Center-Converged and
Virtual Ethernet Switching, 2011, pp. 9–15.

[19] F. D. Neeser, B. Metzler, and P. W. Frey, “Softrdma: Implementing
iwarp over tcp kernel sockets,” IBM Journal of Research and Devel-
opment, vol. 54, no. 1, pp. 5–1, 2010.

[20] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to
build a fast, cpu-efficient key-value store,” in Presented as part of the
2013 USENIX Annual Technical Conference (USENIXATC 13), 2013,
pp. 103–114.

[21] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li, “Fast and concurrent
RDF queries with rdma-based distributed graph exploration,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 317–332.

[22] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou, “Fast
distributed deep learning over rdma,” in Proceedings of the Fourteenth
EuroSys Conference 2019, 2019, pp. 1–14.

[23] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“Netcat: Practical cache attacks from the network,” in Proceedings of
IEEE Security & Privacy 2020. IEEE, 2020.

[24] S.-Y. Tsai, M. Payer, and Y. Zhang, “Pythia: remote oracles for the
masses,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 693–710.

[25] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 2139–2153.

[26] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. A. Faruque, “Leaky
DNN: stealing deep-learning model secret with GPU context-switching
side-channel,” in 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2020, Valencia, Spain, June
29 - July 2, 2020, 2020, pp. 125–137.

[27] “Nvme over fabrics,” https://nvmexpress.org/wp-content/uploads/NVM
e Over Fabrics.pdf, accessed: 2020-03-05.

[28] D. J. Miller, P. M. Watts, and A. W. Moore, “Motivating future
interconnects: a differential measurement analysis of pci latency,” in
Proceedings of the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, 2009, pp. 94–103.

[29] M. Martinasso, G. Kwasniewski, S. R. Alam, T. C. Schulthess, and
T. Hoefler, “A pcie congestion-aware performance model for densely
populated accelerator servers,” in SC’16: Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 739–749.

[30] M. Martinasso and J.-F. Méhaut, “A contention-aware performance
model for hpc-based networks: A case study of the infiniband network,”
in European Conference on Parallel Processing. Springer, 2011, pp.
91–102.

[31] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with
exception-less system calls.” in Osdi, vol. 10, 2010, pp. 1–8.

[32] “What is rdma?” https://community.mellanox.com/s/article/what-is-r
dma-x, accessed: 2020-08-27.

[33] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “Spdk: A development kit to build
high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2017, pp. 154–161.

[34] “Userspace networking with dpdk,” https://www.linuxjournal.com/con
tent/userspace-networking-dpdk, accessed: 2020-02-29.

[35] “Rdtscp,” https://www.felixcloutier.com/x86/rdtscp, accessed: 2020-02-
29.

[36] “Ip over infiniband (ipoib),” https://docs.mellanox.com/pages/viewpage
.action?pageId=12004991, accessed: 2020-08-27.

[37] “Which queue pair type to use,” https://www.rdmamojo.com/2013/06
/01/which-queue-pair-type-to-use/, accessed: 2020-02-29.

[38] “Introducing 200g hdr infiniband solutions,” https://www.mellanox.c
om/related-docs/whitepapers/WP Introducing 200G HDR InfiniBan
d Solutions.pdf, accessed: 2020-02-25.

[39] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-
cores cache covert channel,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 46–64.

[40] “Enabling gpu rendering on windows server 2016 / windows 10
rdp,” https://community.esri.com/thread/225251-enabling-gpu-renderi
ng-on-windows-server-2016-windows-10-rdp, accessed: 2020-08-27.

[41] “Creating a virtual gpu-accelerated linux workstation,”
https://cloud.google.com/solutions/creating-a-virtual-gpu-accelerat
ed-linux-workstation, accessed: 2020-08-27.

[42] “Deploying a 4x4k, gpu-backed linux desktop instance on aws,”
https://aws.amazon.com/cn/blogs/compute/deploying-4k-gpu-backed-l
inux-desktop-instance-on-aws/, accessed: 2020-02-20.

[43] Unknown, “Steamworks,” https://partner.steamgames.com/, 2020, [On-
line; accessed 18-December-2020].

[44] ——, “Rethinking Visual Cloud Services for Evolving Media,”
https://www.intel.ru/content/dam/www/public/us/en/documents/guides
/vcd-wp-v6.pdf, 2020, [Online; accessed 18-August-2020].

[45] “Remote desktop services - gpu acceleration,” https://docs.microsoft.c
om/en-us/windows-server/remote/remote-desktop-services/rds-graphic
s-virtualization, accessed: 2020-08-27.

[46] “Remote desktop software statistics and trends,” https://www.trustr
adius.com/vendor-blog/remote-desktop-buyer-statistics-and-trends,
accessed: 2020-08-27.

[47] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer,
and S. Mangard, “Keydrown: Eliminating software-based keystroke
timing side-channel attacks,” 2018.

[48] D. Wang, A. Neupane, Z. Qian, N. B. Abu-Ghazaleh, S. V. Krish-
namurthy, E. J. Colbert, and P. Yu, “Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries,” in NDSS, 2019.

[49] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[50] “Gpu accelerated compositing in chrome,” https://www.chromium.org
/developers/design-documents/gpu-accelerated-compositing-in-chrom
e, accessed: 2020-02-20.

[51] “Webgl: 2d and 3d graphics for the web,” https://developer.mozilla.or
g/en-US/docs/Web/API/WebGL API, accessed: 2020-02-29.

[52] “How to turn hardware acceleration on and off in chrome,”
https://www.howtogeek.com/412738/how-to-turn-hardware-accelerat
ion-on-and-off-in-chrome/, accessed: 2020-02-11.

[53] B. Pourghassemi, A. Amiri Sani, and A. Chandramowlishwaran,
“What-if analysis of page load time in web browsers using causal
profiling,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 3, no. 2, pp. 1–23, 2019.

[54] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term mem-
ory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[55] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” in International
Conference on Machine Learning, vol. 34, 2017, pp. 1–5.

[56] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015.

[57] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 399–414.

[58] D. Lustig and M. Martonosi, “Reducing gpu offload latency via fine-
grained cpu-gpu synchronization,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2013, pp. 354–365.

[59] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood et al., “Deepsniffer: A dnn model extraction
framework based on learning architectural hints,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 385–399.

[60] “Intel ethernet server adapter i210-t1,” https://www.intel.com/conten
t/www/us/en/products/network-io/ethernet/gigabit-adapters/server-i21
0-t1.html, accessed: 2020-02-29.

[61] “Storage system design analysis: Factors affecting nvme ssd
performance,” https://www.alibabacloud.com/blog/storage-system-d
esign-analysis-factors-affecting-nvme-ssd-performance-2 594376,
accessed: 2020-02-29.

[62] “infiniband switches,” https://store.mellanox.com/categories/switches/i
nfiniband-switches.html, accessed: 2020-02-29.

[63] Unknown, “English Word lists,” https://github.com/mahavivo/englis
h-wordlists/blob/master/COCA 20000.txt, 2020, [Online; accessed 18-
August-2020].

[64] “Alexa top sites in china,” https://www.alexa.com/topsites/countries/C
N/, accessed: 2020-03-05.

[65] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered
on your browser by exploiting gpu vulnerabilities,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 19–33.

[66] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 639–656.

[67] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[68] https://github.com/carpedm20/DCGAN-tensorflow, accessed: 2020-02-
11.

[69] “Rnn-lstm/autoencoder/regression cite,” https://github.com/MorvanZho
u/Tensorflow-Tutorial/blob/master/tutorial-contents/, accessed: 2020-
02-11.

[70] https://github.com/ilivans/tf-rnn-attention, accessed: 2020-02-11.
[71] https://github.com/Natsu6767/ResNet-Tensorflow, accessed: 2020-02-

11.
[72] https://github.com/tensorflow/models/tree/master/research/inception,

accessed: 2020-02-11.
[73] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific

infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36–38,
2014.

[74] “Aws nitro system,” https://aws.amazon.com/ec2/nitro/, accessed: 2020-
08-27.

[75] “Ali pingtou is developing a dedicated soc chip for cloud server
core moc card,” https://www.firstxw.com/view/236611.html, accessed:
2020-08-27.

[76] D. Y. Yoon, M. Chowdhury, and B. Mozafari, “Distributed lock
management with rdma: decentralization without starvation,” in Pro-
ceedings of the 2018 International Conference on Management of Data,
2018, pp. 1571–1586.

[77] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo,
“Programmable in-network security for context-aware byod policies,”
in USENIX Security Symposium, 2020.

[78] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in NDSS, 2020.

[79] “Processor counter monitor (pcm),” https://github.com/opcm/pcm, ac-
cessed: 2020-08-26.

[80] I. Granovsky and E. Perlin, “Integrating pci express ip in a
soc,” https://www.design-reuse.com/articles/15545/integrating-pci-exp
ress-ip-in-a-soc.html, accessed: 2020-08-26.

[81] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 69–87.

[82] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. F. L. Porta, P. D.
McDaniel, and L. M. Marvel, “Malicious co-residency on the cloud:
Attacks and defense,” in INFOCOM. IEEE, 2017, pp. 1–9.

[83] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of
computer security, vol. 1, no. 3-4, pp. 233–254, 1992.

[84] ——, “Lattice scheduling and covert channels,” in Proceedings 1992
IEEE Computer Society Symposium on Research in Security and
Privacy. IEEE Computer Society, 1992, pp. 52–52.

[85] J. W. Gray, “On introducing noise into the bus-contention channel,” in
Proceedings 1993 IEEE Computer Society Symposium on Research in
Security and Privacy. IEEE, 1993, pp. 90–98.

[86] J. W. Gray III, “Countermeasures and tradeoffs for a class of covert
timing channels,” Tech. Rep., 1994.

[87] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-
bandwidth and reliable covert channel attacks inside the cloud,”
IEEE/ACM Transactions on Networking, vol. 23, no. 2, pp. 603–615,
2014.

[88] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-cpu attacks,” in
25th USENIX Security Symposium (USENIX Security 16), 2016, pp.
565–581.

[89] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in Proceedings of the 11th ACM on Asia conference on
computer and communications security, 2016, pp. 353–364.

[90] D. X. Song, D. A. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.” in USENIX Security Symposium, vol. 2001,
2001.

[91] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in 2010 IEEE
Symposium on Security and Privacy. IEEE, 2010, pp. 191–206.

[92] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
2012 IEEE symposium on security and privacy. IEEE, 2012, pp.
332–346.

[93] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and R. Perdisci,
“Httpos: Sealing information leaks with browser-side obfuscation of
encrypted flows.” in NDSS, vol. 11, 2011.

[94] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 1,
pp. 114–125, 2015.

[95] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187–1203.

[96] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang, and R. Liu, “Vulnerable
gpu memory management: towards recovering raw data from gpu,”
Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 2, pp.
57–73, 2017.

[97] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 1406–1418.

[98] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse
engineering of neural network architectures through electromagnetic
side channel,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 515–532.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
19/presentation/batina

[99] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you
see: Power side-channel attack on convolutional neural network
accelerators,” in Proceedings of the 34th Annual Computer Security
Applications Conference, ser. ACSAC ’18. New York, NY, USA:
ACM, 2018, pp. 393–406. [Online]. Available: http://doi.acm.org/10.1
145/3274694.3274696

[100] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering
convolutional neural networks through side-channel information leaks,”
in Proceedings of the 55th Annual Design Automation Conference,
ser. DAC ’18. New York, NY, USA: ACM, 2018, pp. 4:1–4:6.
[Online]. Available: http://doi.acm.org/10.1145/3195970.3196105

[101] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels,” CoRR, vol. abs/1812.11720, 2018.
[Online]. Available: http://arxiv.org/abs/1812.11720

[102] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 2003–2020.

[103] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitras, “Security analysis of deep
neural networks operating in the presence of cache side-channel
attacks,” CoRR, vol. abs/1810.03487, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03487

APPENDIX A
I/O LATENCY UNDER KERNEL-BYPASSING

Traditionally, an I/O operation consists of four segments,
as shown in Figure 9 (left). Here we use a C library API
fread(), which reads file content into memory buffer, as
the example. When it is executed by the CPU, A) a request
will be issued from the user space to the kernel space, going
through drivers (file system, block, and PCI), till delivered to
the hard drive; B) the hard drive processes the request; C)
the results are written to memory; D) the code waiting for the
result is notified about the request completion. To measure the
I/O latency of fread(), the developer can execute clock()
before and after and compute the interval, say I, which equals
to the sum of A, B, C, and D.

Start =clock();

fread(fd, buf);

End=clock();

Start =clock();

Send.enqueue(Write);
while(!completion.
dequeue());

End=clock();

Kernel Bypass I/ONormal I/O

Libc

Call Gate
FS Driver
Block Dev

Driver
PCI Driver

PCIe Link

Device
Processing

PCIe Link

Copy to User
Return to

User

SPDK

PCIe Link

Device
Processing

PCIe Link
User

Space

Kernel
Space

Hardware

Fig. 9: Normal I/O vs Kernel-bypass I/O.

After PCIe congestion, I is supposed to be increased and
the adversary tries to use it to infer the status of the victim
device. However, such measurement is not always reliable as
A and D involve system calls and interrupt handling, whose
latency is pretty random [31]. B and C are directly related to
the operational status of the I/O device, which can reflect the
degree of PCIe congestion, but they are overwhelmed by A
and D.

However, the procedure is largely different when the kernel-
bypass drivers are used. As shown in Figure 9 (right), the
developer uses send queue and completion queue to decouple
OS from the I/O path. The user-space application directly
writes a request to a memory region that is mapped to
the I/O device, eliminating A. On completion, the result is
written into a pre-allocated memory region to be polled by
the application without interrupting CPU, eliminating D. As
a result, I is composed of B and C, making measurement
on PCIe congestion possible. In fact, the latency I can be
“amplified” several times. For instance, In the setting that a
GPU shares a link with a NIC, the delay of packet receiving
on the NIC (I) can go up 6 times, when link congestion is
caused by the GPU whose status turns from idle to exchanging
data, as we will show in Figure 2 in Section IV.

APPENDIX B
ATTEMPT OF RECOVERING LAYERS

According to Wei et al. [26], when TensorFlow is leveraged
to run a DNN model, executing each layer involves data
and code exchange between CPU and GPU, which should
introduce intermittent PCIe traffic. We attempted to segment
the delay sequence and recognize the layers, but found the
PCIe traffic of different layers are interleaved. We execute
two models (one with a conv layer and one with relu and
pool layers) and their combination (conv-relu-pool). The delay
sequence is shown in Figure 10. As we can see, the delay
sequence from conv-relu-pool model is not simply the con-
catenation of conv and relu-pool.

0 conv-relu-pool 13s

0.2k

1.5k

2k

0 conv 13s

0.2k

1.5k

2k

In
te

rv
a

l
(c

y
c
le

s
)

0 relu-pool 13s

0.2k

1.5k

2k

Fig. 10: The delay sequences of the three tested models, which
are collected by RDMA NIC.

APPENDIX C
APPLICATIONS INVESTIGATED FOR CARET BLINKING

We investigated 10 applications in Ubuntu to see how many
of them have blinking caret during user typing, but found only
Firefox, as shown in by Table VII, has this behavior.

App name Version Comment
Google Chrome 79.0.3945.88

Firefox 80.0.1-1 Caret Blinks
gedit 3.28.1

PyCharm 2020.2.1
Sublime Text 3211

VS Code 1.48.2
LibreOffice Writer 1:6.0.7
LibreOffice Calc 1:6.0.7

IDEA Community 2020.2.1
Skype 8.64.0.67

TABLE VII: Applications investigated for caret blinking.

APPENDIX D
LIST OF WORDS TESTED FOR WORD RECOVERY

hero, test, need, that, rise, star, aids, hate, diet, road, hers,
host, than, tree, sit, dad, eat, dna, sin, net, its, rid, ear, her, art,
toe, tie, hit, radar, sense, their, heart, share, taste, harsh, ratio,
north, trend, shore, order, noise, trash, stand.

