Android on PC: On the Security of End-user Android Emulators

Fenghao Xu!, Siyu Shen?!, Wenrui Diao®3, Zhou Li%, Yi Chen!, Rui Li%*3, and Kehuan Zhangl*

'The Chinese University of Hong Kong
x£016@1link.cuhk.edu.hk, {ss019,yichen,khzhang}@ie.cuhk.edu.hk
2School of Cyber Science and Technology, Shandong University, diaowenrui@sdu.edu.cn, leiry@mail.sdu.edu.cn
*Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University
“University of California, Irvine, zhou.1i@uci.edu

ABSTRACT

Android emulators today are not only acting as a debugging tool
for developers but also serving the massive end-users. These end-
user Android emulators have attracted millions of users due to
their advantages of running mobile apps on desktops and are
especially appealing for mobile game players who demand larger
screens and better performance. Besides, they commonly provide
some customized assistant functionalities to improve the user
experience, such as keyboard mapping and app installation from the
host. To implement these services, emulators inevitably introduce
communication channels between host OS and Android OS (in
the Virtual Machine), thus forming a unique architecture which
mobile phone does not have. However, it is unknown whether this
architecture brings any new security risks to emulators.

This paper performed a systematic study on end-user Android
emulators and discovered a series of security flaws on commu-
nication channel authentication, permission control, and open
interfaces. Attackers could exploit these flaws to bypass Android
security mechanisms and escalate their privileges inside emulators,
ultimately invading users’ privacy, such as stealing valuable game
accounts and credentials. To understand the impact of our findings,
we studied six popular emulators and measured their flaws. The
results showed that the issues are pervasive and could cause severe
security consequences. We believe our work just shows the tip
of the iceberg, and further research can be done to improve the
security of this ecosystem.

CCS CONCEPTS

« Security and privacy — Systems security.

KEYWORDS
Android Emulator; Security Assessment

ACM Reference Format:
Fenghao Xu, Siyu Shen, Wenrui Diao, Zhou Li, Yi Chen, Rui Li, and
Kehuan Zhang. 2021. Android on PC: On the Security of End-user Android

“Kehuan Zhang is the corresponding author. Part of Fenghao Xu’s work was done
when visiting University of California, Irvine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484774

Emulators. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS '21), November 15-19, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3460120.3484774

1 INTRODUCTION

Android emulator creates virtual Android devices on the host
computer, enabling users to run Android apps on their desktops.
Android developers have been using emulators shipped with
Android Studio to test their apps [11], but in recent years the
Android emulators designed especially for end-users are gaining
traction. These emulators are designed to make better use of the
powerful CPU/GPU performance of the host (usually a Windows
PC) and provide many assistive functionalities like keyboard
mapping to facilitate users’ tasks. Compared with mobile phones,
users can enjoy a larger screen and higher performance when
running Android apps. Gamers especially enjoy these emulators,
as they can use mouse and keyboard to perform gaming actions
more quickly and precisely, and at the same time avoid the issues of
limited battery and over-heating on mobile phones. As a result, end-
user emulators have already gained a large user base. For instance,
BlueStacks [15] alone has 400 million users worldwide.

On the other hand, the Android emulators could process users’
sensitive data, which makes them lucrative targets to attackers.
For example, when using the emulators, the users might need to
login to their Google accounts to download apps from the Google
Play Store (pre-installed in emulators). The gamers might have
in-game purchases associated with their bank/payment account.
At least, the Android emulators should not weaken the security
guarantees from Android OS. However, so far, there has been no
systematic study on the security of end-user Android emulators,
and we found the term “emulation” could be giving people a false
sense of security [50]. Therefore, we are motivated to study the
security problems of emulators and demonstrate the importance of
emulator security.

New Security Risks. Most emulators run on top of the Virtual
Machine (VM), which virtualizes the computing environment and
the underlying hardware resources. The actual Android OS is
placed in the VM to support and manage the installed mobile apps.
To provide a better experience, the emulator usually separates
the above VM process from its main UI process which users
actually interact with. In this way, it is inevitable to introduce a
communication channel between the above processes, i.e., between
the host-side main Ul process and guest-side Android OS. For
example, to provide a seamless user experience, users can use their
input method (IME) tool on the host OS when typing, and the
emulator will encapsulate the completed text and send it to Android.

https://doi.org/10.1145/3460120.3484774
https://doi.org/10.1145/3460120.3484774
https://doi.org/10.1145/3460120.3484774

Moreover, since the underlying VM only supports raw mouse
and keyboard inputs natively, this IME text is usually transmitted
through the customized channel introduced by emulator vendors.
Besides, the implementation of gaming assistant tools and other
functionalities also rely on that channel, which we will illustrate in
Section 2.2.

In practice, the emulator developers design the communica-

tion architecture through customizing Android firmware, such
as modifying system components and adding new Android ser-
vices. Such customization might not be securely designed and
scrutinized. Although researchers have studied security issues
regarding Android customization on mobile phones [26, 27, 66, 82],
we note that their methods can not be simply applied to emulators
because emulators have different, more complicated structures and
support new functionalities. Therefore, it is unclear what security
requirements should be satisfied, what are the security and privacy
implications behind such new emulator services, and whether their
unique architecture brings new risks to the emulator system.
Our Work. To bridge the research gap, we conducted a systematic
study on popular Android emulators. As a platform to host various
third-party apps, emulators should always comply with the existing
Android security model (e.g., the separation between apps and
permission protection on the sensitive resources) when customizing
the system. Yet, we reached an opposing conclusion: we found that,
when designing their custom services, the emulator vendors usually
make incorrect assumptions about the adversaries’ capabilities
(Section 3.2), which lead to inadequate protection on emulator
services. Hence, the attacker can abuse the customized components
to launch a variety of high-risk attacks.

We investigated 6 popular emulators and tested their compo-
nents related to key functionalities (e.g., user input handling). We
found that they all suffered from different security issues. The root
cause is that emulators do not adequately protect their security-
sensitive communication channel, which is utilized to transmit
commands and data from the host to Android or from Android
to the host and open the door to confused-deputy attacks. For
example, by abusing the IME text channel, a malicious Android
app located in the same emulator can inject any text to Android
(details in Section 4.1). As another example, attackers can launch
a race condition attack to hijack the app installation process
(Section 4.2) and finally install an arbitrary app. In another case,
we can manipulate the Windows tabs to launch a phishing attack
(Section 4.3). Even worse, a malicious app can gain system privilege
(e.g., root) without user consent, which will change the app into
“God Mode” and enable the adversary to do nearly anything within
the emulator (Section 4.4). These vulnerabilities are rooted in
different communication channels, including TCP/UDP, virtual
device, and Android IPC (inter-process communication).
Measurement Result. We inspected six popular emulators to
understand how they implemented the above functionalities and
whether they are vulnerable to our attacks. The results (in Table 4)
show that all of them are flawed and vulnerable to some of our
concrete attacks. We have uploaded our attack demos at https:
//sites.google.com/view/emulatorsec.

Contributions. In summary, we make the following contributions
in this paper.

o New Understanding. We systematically studied and uncov-
ered the typical architecture of Android emulators, which
helps in understanding the security model and identifying
new vulnerabilities in this ecosystem.

e New Flaws and Attacks. We reported a series of flaws
associated with the emulator features. By exploiting them,
we constructed five practical attacks and revealed realistic
security and privacy risks.

o Measurement and Discussions. We measured the scope and
magnitude of the flaws by inspecting each emulator and
testing our attacks, which showed their broad impacts and
severe consequences. We also suggested some mitigation
approaches for building a more secure emulator system.

Roadmap. The rest of this paper is organized as follows. Section 2
introduces relevant background on Android emulators. Section 3
shows the fundamental causes and the threat model of the attacks.
Section 4 details the exact design flaws regarding each functionality
and shows our attacks. In Section 5, we measure the implementa-
tions of four emulator services and corresponding attacks across
six emulators. Then we give some suggestions on mitigation and
discuss future works in Section 6. Section 7 summarizes related
works and Section 8 concludes this paper.

2 BACKGROUND

In this section, we introduce the relevant background of the
Android emulator. We first present an overview of different types
of emulators with their target user groups. Next, we describe the
typical emulator architecture which we learned through reverse
engineering.

2.1 Android Emulator Types

The Android emulators can be divided into two categories: for
developers and for end-users. The former ones are mainly leveraged
to assist app development or perform automated app testing.
For example, Genymotion [18] contains both desktop and cloud
development environment that enables parallel testing and remote
monitoring on different Android versions. Android Studio [11] inte-
grates the official emulator from Google for testing and debugging
without leaving the IDE. Though the developer-oriented emulators
could be vulnerable, we did not investigate them in this work since
they usually run a single app under the debugging environment and
do not involve private information. Yet, their security needs to be
examined when they are used by end-users, and we acknowledge
this limitation in our study scope in Section 6.3.

Different from the developer-oriented emulators, the end-user
emulators aim to enhance the user experience with Android apps,
by taking advantage of the larger screen, better GPU performance,
and physical keyboards on PCs. It is particularly favored to play
mobile games and live-stream the gameplay (e.g., by YouTubers) [5].
We focus on the security of end-user emulators, because they are
much more likely to carry sensitive information from the users':
1) When game apps are played on the emulator, the user will
log in with her game credential, which can be linked to in-game
purchases and become valuable if traded. In fact, there have been a

The terms “Android emulator” and “emulator” in the following text refer to end-user
Android emulators for brevity.

https://sites.google.com/view/emulatorsec
https://sites.google.com/view/emulatorsec

Table 1: Popular Emulators.

Name VM Host OS Downloads Languages
BlueStacks VB Win, macOS 400M 16
LDPlayer VB Win 100M+ 15+
MEmu VB Win 100M 21
MuMu VB Win, macOS 5M 5
NoxPlayer VB Win, macOS 150M 20
GameLoop VB/self* Win 500M 11

VMCore WinShell
Tab| Tab]| ...
Android
Port TCP
e L)
T ubpP User
interactions
IPC on this
l Dev process
P Ye—(
Virtual)
A Device
| HW & Res I: -
VB config

VB: VirtualBox
*: It has self-developed VM engine co-located with VB, which runs apps from
GameLoop’s own app store.

number of attack incidents targeting game credentials [29, 45, 46].
2) Beyond the game credentials, the user might need to input other
sensitive information to use the app, like the Google Play credential
to download the app and the social network credentials to share
the gaming activities. 3) Beyond gaming, other utility apps are also
provided in the app stores and supported by these emulators, like
the Facebook app, which are also under threat when the emulators
are vulnerable.

In this paper, we select six end-user emulators based on their
popularity [8], usability, and whether they are actively maintained
(regularly updated). Table 1 lists these emulators and their download
count as claimed on their websites [15, 16, 20, 22, 24, 51]. It can be
seen that they are targeting a global user base and have received
millions of downloads, but through this study, we found they all
introduce severe security and privacy risks. Note that although the
underlying Virtual Machine (VM) of all chosen emulators happened
to be based on VirtualBox, the discovered flaws in this paper
originated from the vendor customization at Android-layer and are
orthogonal to the specific VM-layer implementation. One example
is Gameloop. Although it has a version with a self-designed engine
rather than VirtualBox, we actually found both versions have the
same flaws (e.g., overly-opened ADB as described in Section 4.4).

2.2 Emulator Architecture

Understanding the architecture of the emulators is an essential
step prior to the security analysis. However, none of the emu-
lator vendors provide detailed documents for their architectural
designs. Hence, we obtain such insider information from reverse-
engineering and reading the hypervisor documents (VirtualBox
documentation [23] in particular). The high-level emulator archi-
tecture is illustrated in Figure 1.

First, the emulator needs to host Android OS within a virtualized
environment. We found most emulator vendors leverage open-
sourced VirtualBox [23] as their underlying hypervisor. The other
options, such as the self-developed AOW engine on GameLoop [24]
and lightweight container scheme like AnBox [6], are rarely seen.

The hypervisor will create a VM to host the Android OS image,
which is customized from Android Open Source Project (AOSP) [10]
by the emulator vendors. The VM working process (called VMCore
process in this paper) usually runs in the headless mode [70] (in
the background) and talks to another process of the host (called

Figure 1: Emulator Architecture. (“HW & Res” are short for
“Hardware & Resources”.)

Sidebar

Tab-bar
A

Blueﬂ‘“ks M Home () Brows {@} Andro

M james Game center %
Y9 it §-@

Personalize ==
N O
> =zn
GooglePlay ol @ N -]

(%

Google Play . my app System apps

Figure 2: Emulator Example - BlueStacks.

WinShell process when the host is Windows?) managed by the
emulator. WinShell shows the main Ul of the emulator, handles user
interactions, and commands VMCore. An example of the emulator
Ul is shown in Figure 2, which integrates the app tab-bar and button
sidebar, and shows the Android display in the foreground.

The tab-bar shows the labels (app name and icon) of current and
recent Android apps (see Figure 2). By interacting with the tabs,
users can conveniently switch or close apps to achieve the same
effect as using the “back”, “home”, and “recent” navigation buttons.
The sidebar usually contains shortcuts to perform utility functions
like taking screenshots and installing apps. Besides, there is also a
settings menu on the windows UI, through which users can adjust
the emulator configurations (e.g., the CPU/memory allocation to
Android and notifications on/off).

Host-Guest Communication. To perform the aforementioned
functionalities, WinShell is designed to forward the relevant
commands and (or) data to VMCore, let VMCore transport the
commands to Android OS, and relay the feedback from Android.
Take the “install” shortcut on the sidebar as an example. The user
can select an APK file from Windows and install it on Android. To
do so, WinShell will send the selected file and an “install” command

2We focus on Windows in this paper due to its more extensive user base. Unless
otherwise indicated, “host” always refers to Windows in this paper.

to Android. A daemon within Android (called HostService in this
paper) will receive the command and initiate the installation process
(e.g., running PackageInstaller in Android). The daemon could
be a Linux native program written by C/C++ or an Android app
written by Java. It usually has the high privilege and (or) system-
level permissions. Our analysis of the 6 emulators discovered
different host-guest channels, including TCP/UDP, Virtual Device,
VirtualBox (VB) Configurations, and Shared Folders.

e TCP/UDP. Given that host-guest communication has to bypass the
VM sandbox restriction of the Virtual Machine, it is a convenient
approach to treat the host and guest as two network entities and
exchange messages through TCP/UCP. By configuring a set of
port-forwarding rules on VB, the ports on VMCore process could
communicate with the ports of WinShell, and forward the host
messages to Android, as shown by the upper path in Figure 1.
Simultaneously, the VM’s NAT network is also configured such
that Android views Windows as another peer machine inside a local
network. As a result, Android can also send packets to Windows
ports, just by specifying the virtual “IP address” of the Windows
machine as configured by the network adapter.

o Virtual Device. The virtual device [69] supported by VB provides
another channel for host-guest communication (shown as the
middle path in Figure 1). Android inside VMCore can add customized
virtual devices and make them accessible to the WinShell with
VB APIs. These devices are shown as ordinary Linux devices on
Android, so they can also be read/written by Android processes.

o VB Configuration and Shared Folders. We note that hypervisors like
VB can adjust the guest OS with configurations, such as the number
of occupied CPU cores, RAM size, Network Adapter preferences
(shown as “HW & Res” in Figure 1), although this channel is unlikely
to carry the app’s data. VB’s shared folder feature is also used by
the host and Android to exchange files, such as photos, videos, and
application packages.

3 PROBLEM OVERVIEW AND ANALYSIS

In this section, we first describe the threat model under the emulator
setting and the scope of this study. Then, we formalize the security
guarantees that should be met by the emulator and show how they
can be violated under the new communication channels introduced
by the emulator.

3.1 Threat Model

In this study, we focus on the end-user Android emulators and
assume the host OS is Windows. We assume the emulator itself and
the host OS (and host apps) are both benign. During the attack, we
assume a malicious app disguised as a benign app has been installed
onto the emulator’s Android, but it does not ask for any sensitive,
dangerous, or system-level permission, e.g., GET_ACCOUNTS. The
attacker can deliver the malicious app to users’ emulators by
uploading it to app stores, like the official store (i.e., Google Play)
and the 3rd-party stores (e.g., Nox App Center of NoxPlayer). These
app stores are usually bundled with the emulators. To make the
malicious app innocuous and trick the victim users to install it,
the attacker can integrate the malicious code into repackaged apps
or malicious SDKs [59]. Noticeably, previous works on studying
Android security often follow the same threat model [28, 47]. Once

the malicious app is launched, it could run in the background by
launching an Android Service [33], and exploit the design flaws
of the emulators to break their security guarantees (elaborated in
Section 3.2). The attacker’s goals are similar to the previous attacks
targeting Android apps, like stealing user’s credentials and selling
them on the underground market [62].

In addition to the malicious-app (within the emulator) threat

model, host-side attacks are also possible. For example, the IPC
mechanism of BlueStacks used to be vulnerable to webpages that
are loaded on the host and launching DNS rebinding [2]. Since
some of our attacks also exploit the same channels like HTTP, we
expect they can be performed on the host side as well. We discuss
this setting in more detail in Section 6.3.
Problem Scope. This paper focuses on the design and imple-
mentation loopholes related to the emulator’s architecture and
customized services. Since we assume the attacker only owns an
app, the attacks compromising the components outside the Android
OS (e.g., the supply-chain attack compromising the emulator’s
code base [61]) are out of scope. The vulnerabilities related to the
standard components of Android OS (e.g., framework library), other
pre-installed apps (e.g., Chrome Browser) are also out of scope. In
Section 6.3, we further discuss the scope.

3.2 Security Analysis

Security Guarantees. We first summarize the security guarantees
that the Android emulator should offer. Essentially, the Android
emulator should inherit the security guarantees from both Android
OS and VM sandbox.

e SG#0. The apps running in the emulator should not be able
to escape the VM sandbox and attack the hypervisor/host.

o SG#1. The apps inside the emulator should be properly
separated from each other and the system.

e SG#2. The emulator should keep high-risk preferences
turned off by default and notify users promptly when the
high-profile resources are accessed (e.g., developer mode,
accessibility service [30, 31]).

e SG#3. The emulator should faithfully forward the data and
commands between the Windows UI (i.e., WinShell process)
and the Android. In other words, the Ul integrity should be
preserved.

Attack Surface. Since the end-user emulator is mainly developed
to enhance user’s experience with Android apps (as summarized in
Section 2.1), we expect the changes to the underlying architecture
and policies of VirtualBox and Android are minimized. Hence, the
security guarantees provided by Android and VM sandbox should
be preserved, e.g., VM isolation for SG#0 and SG#3, Linux access
control [12] and Android permission mechanism [32] for SG#1 and
SG#2.

Yet, as described in Section 2.2, the new host-guest communica-
tion channels introduce new ways for an app to interact with other
components, and their designs might not be secure. One mistake
that developers usually make in designing the communication
channels is forgetting to verify the authenticity and integrity of
the sender/receiver, which leads to the confused-deputy attacks.
Taking the commands from WinShell as an example, though they
are expected to be sent from the host, an app inside Android can

also access the network ports/devices/folders and thus send the
same commands. The missing checks on HostService could let an
attacker app impersonate a user and issue arbitrary commands,
including the ones requiring high privilege. On the other hand,
building a secure host-guest communication channel is a known
challenging task, since customized features are to be supported and
they do not always share the same communication protocol.
Therefore, we are motivated to analyze the communication
mechanisms of the emulator and test if they can be abused to
break the security guarantees. Following the emulator architecture
shown in Figure 1, we analyzed the TCP/UDP channel, virtual
device channel, and the Android local IPC channel that bridges
apps internally.
e TCP/UDP. Since an app inside the emulator can be assigned
with TCP/UDP ports and the Windows host has an accessible IP
address, an app can connect to WinShell by using the host’s IP with
WinShell’s ports on Windows, or connect to HostService through
its ports on Android. We found the ports are often fixed after the
services/emulators are restarted, which avoids the attack overhead
in guessing the ports. Although Android doesn’t allow apps to
sniff TCP/UDP traffic (except with root privilege), it is lenient
when an app generates TCP/UDP traffic (only android. Internet
permission under the normal protection level is needed and it is
automatically granted after app’s installation). Though servers on
the Internet can authenticate the clients through application-layer
protocols like TLS and mechanisms like certificates, we found
none of the emulators enforce such protection or encrypt the
data/messages in this channel. A previous study investigated the
risks of open ports by Android apps [72], and we extend this
direction to emulators.
e Virtual Device. Virtual devices are usually exposed to Android
OS and apps as Linux device nodes under /dev. Though the virtual
device can be protected by Linux file permissions, previous studies
have shown that the permissions are not often set at the right
granularity, which opens the door to the attacker [82]. Sometimes,
the device driver on the Linux kernel might have extra verification,
e.g., involving complex protocols and synchronization procedures
to mediate the access. However, this is not a fundamental hurdle for
the attackers as long as they reverse-engineer these mechanisms.
o Local IPC. If neither of the above host-guest interfaces is open
to the malicious app, the attacker still has a chance to exploit the
local IPC channels (if they exist) to compromise the communication
paths. As shown in Figure 1, upon receiving messages from the host,
HostService can execute the corresponding commands by itself, or
act as a hub to delegate the commands to another Android process
through local IPC. Depending on the emulator’s implementation,
this local IPC can be on the Android level, e.g., Service Intent or
Broadcast [19], or on a lower level, such as another TCP/UDP
channel. It is difficult to achieve comprehensive protection on the
local IPC channel, as shown in prior works studying Android IPC
security [36, 64]. The situation becomes more complicated when
the emulator introduces non-standard ways for IPC. For instance,
we found some emulators use customized system properties (i.e.,
SystemProperty [17] to store key-value pairs) to share system
status or configurations (e.g., server port number, foreground app
name) between processes, but any app can use Java reflection to call

Table 2: Emulator features, security/privacy risks and secu-
rity implications.

Feature Count* Risk Security Implication
User Input (IME, Sensitive information within
Macros, 6 high user’s input could be sniffed or

Keyboard-map) spoofed.

Malicious 3rd-party apps from

Install App 6 high APKs could be installed on the
emulator.
Tab Manage 4 high Misl‘eading tab informatior? .
facilitates app spoofing/phishing.
ADB 6 high ADB shell can run privileged
commands.
Private information on the screen
Screenshot 6 high can be captured without users’
consent.
Some files shared between host
Shared Folder 6 high and guest can be
security-sensitive.
Set Location 5 low App uses fake GPS location.
Shake 6 low App senses false phone shaking
events.
Back/Home 5 low Navigation without users’
Button consent.
Rotate Screen 6 low Adversely affects user experience.
Clear R t
car Becen 2 low Adversely affects user experience.
Apps
Reboot 2 low Interrupts user’s operation.
Volume Control 5 low Adversely affects user experience.

*: Count of the emulators (within the 6 studied ones) having the feature.

android.os.SystemProperties.get() to read any item (most of
them can also be written).

4 FLAWS AND ATTACKS

In this section, we analyze the concrete vulnerabilities associated
with the emulator functionalities and demonstrate practical attacks
against them.

Exploited Functionalities. We first investigate the website de-
scriptions of the six studied emulators (mentioned in Table 1) and
enumerate WinShell Ul elements to discover their provided features,
which are listed in Table 2. To notice is that we skipped the features
that are irrelevant to Android, such as full-screen mode and cursor
locking. Among all the features, we identified six of them as security-
critical which have severe security implications if being exploited.
The others are marked as low-risk, because exploitation on them
has minor impacts on users.

Our Approach of Vulnerability Discovery. We thoroughly stud-
ied the high-risk features, identified vulnerabilities and constructed
effective attacks against them, as described from Sections 4.1 to
4.4. We discuss “Shared Folder” together with “Install APK” in
Section 4.2. The remaining high-risk feature “Screenshot” and the
low-risk features are briefly discussed in Section 4.5.

Below we summarize the general steps we have taken in
analyzing each emulator and feature. These steps help us locate the
components (e.g., the HostService daemons and their binary/APK
files) that are responsible for the vulnerabilities and further verify
them. Section 6.3 provides more details about the vulnerability
discovery process.

(1) We compared the customized firmware in the emulator to
the AOSP firmware and extracted the customized programs,
Android packages, and particular device nodes.

(2) By inspecting VirtualBox standard configuration files and
logs on the host, we learned all the forwarded ports (from
Android to Windows) and added virtual devices, and then
validated them on the emulator.

(3) We associated the channels (TCP/UDP and virtual de-
vices) with the emulator components through dynamically
monitoring the network and resource usage (e.g., through
“netstat”, “Isof”, “dumpsys” commands on Android).

(4) We triggered each feature and captured all generated loop-
back traffic (using Wireshark [71] on Windows and tcp-
dump [65] on Android).

(5) We examined whether they are vulnerable and constructed
exploitation through either dynamically replaying/injecting
the testing requests or statically analyzing their programs.

Demo. We posted our attack demos online at https://sites.google.c
om/view/emulatorsec.

4.1 User Input

Users can use a keyboard and mouse on emulators to conduct the
same operations as touching the screen of a smartphone. The mouse
click will be sent to Android to generate a raw touch event through
the VirtualBox standard “hardware” or customized channels, which
could also deliver the raw keyboard events. However, special
treatment is needed when users want these raw events to be
processed by Input Method (IME) to generate words and texts.
The typical Android IME may require multiple times of touches
to complete a word, which is convenient on mobile phones, but
repeatedly clicking letters can be annoying on PC. Thus, to provide a
seamless experience, emulators allow users to keep using Windows
IME when typing, and transfer the text into Android directly once
completing the current typing cycle. Since this delivery of texts is
not natively supported by VirtualBox, emulators usually introduce
their customized channels.

Input Processing on Emulator. Figure 3 shows the typical input
processing flow on the emulator, which is built upon the Android
standard input subsystem [9]. The inputs on Windows fall into two
categories: raw input (usually as events) and Windows IME input
(as text). Generally, we found three ways for an emulator to send
inputs to Android:

A. The raw input is transported to HostService through their
customized channels like TCP/UDP or customized virtual
device, which is shown as channel A in the figure. Then,
HostService daemon utilizes Linux uinput [21] mechanism to
create a local input device, which will then be captured by
the standard Android input system and finally dispatched to
the target app.

Android

mouse, keyboard
without IME

keyboard

Android input

Y ' A
DA SR T >
Kernel inject
TCP/ 7 TCP/
UDP/ uinput event I UDP/
dev 7'y dev
A C
raw: keyboard, \ B

{ Windows IME)

Figure 3: Emulator Input Subsystem and Attacks.

mouse

B. A virtual device relays raw input from host to Android kernel
driver, shown as channel B in the figure. The kernel receives
the input as if it were from standard hardware, and the
inputs will go through the standard Android input system.
VirtualBox’s built-in keyboard and mouse functions follow
this link.

C. When Windows IME is active, shown as channel C in the
figure, the completed text will be sent to HostService through
a customized channel, and HostService will forward it to the
Android IME, which can submit text to the focused input
area. The IME is specially designed by the vendors to receive
texts from HostService instead of interacting with the user
through the soft keyboard.

User’s input is considered sensitive, and injecting input events is
protected by the INJECT_EVENT permission. Also, unprivileged apps
cannot sniff user’s input in other apps. There have been some at-
tacks on Android input subsystem, which are based on accessibility
service and UI overlays [40], inferred from sensors [34], or through
third-party keyboard apps [37]. Different from previous works,
the vulnerabilities we found are introduced by the architecture
of emulators. Specifically, we found the path A and path C both
involve emulator customized communications, which are exposed
to attackers, resulting in input spoofing or sniffing.

Attack #1: Input Spoofing (violates SG#1, 3). In this attack, the
malicious app tries to inject spoofing IME data or raw input data to
Android. For instance, in NoxPlayer, both types of input are trans-
mitted through UDP to fixed ports, where the touch event contains
a series of packets: MULTI:1:0:<xCoord>:<yCoord>, MULTI:0:6,
MULTI:0:6, MULTI:0:1, and MSBRL:0:0, with each ending with
a line feed, and the text input uses a packet {c:2,t:"<text>"}.
Knowing the format, we can inject arbitrary touch/key event or

https://sites.google.com/view/emulatorsec
https://sites.google.com/view/emulatorsec

IME text into Android. Note that all the above events are global,
which means our app in the background can perform basically
any Ul operation with this attack. For example, the attacker could
arbitrarily modify system critical settings, grant any dangerous
permission, or open the email app, draft a fake email and send it
out.

Attack #2: Keylogger via Input Sniffing or MITM (violates
SG#1). Here we give two examples about sniffing on users’
input, one by passive sniffing and another by active man-in-the-
middle (MITM). In LDPlayer, HostService relays completed text
from host to Android IME using Android Broadcast, with a
protected-broadcast tag. However, this tag can only prevent un-
privileged apps from sending the broadcast packets but still allows
receiving. Thus, the attacker can register a BroadcastReceiver
with the intent filter specifying action android.intent.action.
EMU_IME_ACTION to receive the broadcast intent, and simply learn
the input text through intent.getStringExtra("text").

In another case, HostService of BlueStacks reads IME text from a

virtual device and forwards it to Android IME through a local TCP
connection. We observed the port number of IME (TCP server) is not
fixed, and BlueStacks stores the dynamic port number in customized
SystemProperty with the key bst.config.imelistenerport, so
that the sender can find the server. However, this SystemProperty
turns out to be both readable and writable by any app. The attacker
could launch a MITM attack by modifying this port number to its
own TCP server port, and then relaying the packets to the real
server. This flaw gives the attacker sniffing and spoofing capability
at the same time, and hide from users.
Discussion. Here we reason about the design rationale behind the
customized channels. Path C is designed to enable users to use
Windows IME instead of Android IME. For the path A, we found
it can facilitate their game assistant features, such as keyboard
mapping (converting certain key events to touch events) and macro
recording (pre-recording a series of input events which can be
replayed). In this case, it is more convenient to use customized
channel and data formats (e.g., a recorded input sequence) to avoid
low-level data encoding of standard inputs.

4.2 App Installation

Emulator users can use the 1st-party or 3rd-party app stores
such as Google Play Store on Android to install apps. Besides,
because users may have downloaded some APK files on their
host OS, emulators also provide a “side-load” installation feature,
enabling users to install APK files stored on the host file system
onto Android conveniently. This side-load installation inevitably
introduces a host-guest communication channel, which may expose
an exploitable interface to attackers.

Package Installation Flaws. In Android, an unprivileged app
needs to explicitly ask for the user’s consent through the system
dialog when it wants to install another app. In contrast, silent app
installation, i.e., installing without alarming users, is considered
highly-sensitive and protected by the INSTALL_PACKAGES permis-
sion, which is only granted to system-level apps (e.g., Package
Installer, official app store). Previous research has discovered
vulnerabilities in the installation process of some app stores that
enable attackers to hijack the process and silently install other

Android

peooeee- Malware @]

ik replaceé

B
o ®

Install App

@ file transmission

Figure 4: App Installation Flow and Hijacking Attack.

unwanted apps [47]. On emulators, we found similar attacks can
be applied to the side-load installation process, which has not been
reported before.

As shown in Figure 4, the side-load installation procedure
includes three steps. First, the user clicks the “install” button of the
emulator and selects the target APK, which could have been stored
in any host folder. Then, the APK file is sent from the host to a
certain location in Android. This step is commonly done through
VirtualBox shared folder service, which allows Android to mount
folders from the host OS into its file system. The emulator could
either statically configure the folders to be shared, so that they will
be mounted upon booting, or dynamically add them while Android
is running. Next, the host will issue the installation command,
usually specifying the path of the target APK file. Finally, the
HostService, which is privileged and has the INSTALL_PACKAGES
permission, performs the app installation on Android.

One possible way to attack this procedure is to inject a spoofing
installation command to HostService specifying the path of the
attacker’s malicious APK file. This works if the command channel
is unprotected. Besides, we found the emulators are vulnerable
to a more general type of hijacking attack. Specifically, we found
that most emulators expose the shared folders to all apps with
the READ_EXTERNAL_STORAGE permission, which is a commonly
used permission, and even to any app (e.g., the file access mode
is 777). Although emulators may quickly delete the APK file after
installation, it does create a side channel for us to track installation
requests by monitoring the existence of APK files. More than that,
we could replace the target APK file with ours, expecting that
Android will wrongfully install our app instead of the target.
Attack #3: Installation Hijacking (violates SG#1, 2). We try to
launch a “Man-in-the-Disk” attack to hijack the app installation.
First, we assume the attack app has silently downloaded the
malicious APK file from the attacker’s server to the emulator’s
storage. To notice, the APK downloading does not trigger any
installation action. Then, the attacker exploits the aforementioned
flaw to install the malicious APK in place of the original one. This
involves a race condition between our process and the installer
process. We need to find the right timing so that we will replace
the file just after it appears in Android, and before the start of
installation.

The basic procedure for this attack is shown in Algorithm 1.
We monitor the folder for any new APK files that appears, and
then copy (or link) our prepared trojan APK to replace the target

Algorithm 1: Installation Hijacking Attack
Input: apkDir: the directory of APKs to be installed,
usually shared folder
Input: attacker APK: the trojan APK file prepared by the
attacker
1 runFlag < true;

2 while runFlag do

3 files « apkDir listFiles;
4 for file € files do
5 if file.name.endsWith(“. apk”) then
6 copyFile(attacker APK, file);
7 runFlag « false;
8 break;
9 end
10 end
11 end

file. For example, we can let the check run at a high frequency
so that we have a decent chance to succeed in the race (i.e., our
app gets installed). We can further extend the attack by checking
the content of the APK and replacing it with the corresponding
phishing app, so that we can launch phishing attacks to steal user
account credentials.

Discussion. In the installation process, the emulators utilize
VirtualBox shared folder to transfer the target APK file. Originally,
this shared folder is widely used in emulators to share some user
files between the host and guest. For example, users may push some
pictures or audios into the folder so that apps could access them
within Android. Therefore, the shared folder conceptually belongs
to the “external storage” on Android, which is initially designed for
storing public and less sensitive files. However, it is inconsistent
with the requirement of APK installation, and opens the door for
our attack.

Another interesting finding we observed in MuMu is that the
whole parent folder of the target APK on the host will be shared into
Android, with an access mode of “777”. Consequently, a malicious
app can even gain access to other files/folders within the same
directory of the target APK on the host, which poses a threat to the
host OS as well.

4.3 Tab Management

The emulators also brought new modes of interaction with apps to
adapt to the desktop environment. We found that many emulators
(4 out of 6) have introduced a tab-bar above the Android window,
similar to the browser tabs, as shown in Figure 2. This feature
informs users about the running apps and enables users to switch
between or close apps easily. Naturally, users will rely on the
information provided by tabs to identify apps and their states. For
example, if the active tab shows a label “Google Play Store” and the
Play Store’s icon, users will consider the current foreground app as
Play Store, as long as the app’s Ul looks like the expected one.
Since the tabs are implemented on WinShell process, the emu-
lator relies on the host-guest communication channel to properly
synchronize the states of apps and tabs. As shown in Figure 5,

Android

collect

- Tab Bar WinShell
inject
info v o | - BI
T omd pp pp
vatware @)

Figure 5: Tab Session Management and Hijacking Attack

the user’s interaction with the tabs will generate a corresponding
command, e.g., moving an app to the foreground or closing an app,
which will be transmitted to Android and executed by a process
(HostService) with high privilege. On the other hand, when an app is
started, moved to the foreground, or closed in Android, HostService
process will collect the app state information and notify WinShell,
so that tabs can be updated accordingly.

However, without proper protection on the communication

channel, a malicious app can send spoofing messages in either
direction, and break the consistency between tabs and app states.
Here we present the Tab Session Hijacking attack, in which the
user will be deceived to recognize our bogus activity as a normal
activity from a benign app (called “target app”). As a result, the
user may perform sensitive actions on the malicious app, such as
entering the login credentials.
Attack #4: Tab Session Hijacking (violates SG#3). We can
hijack the tab session by spoofing the status (active/inactive) of
tabs. Suppose our app is running in the background, and we can
launch the attack as follows:

(1) Monitor app states. Our app keeps inquiring the current
foreground app/activity through some channels exposed
by the emulator. For example, MuMu’s HostService provides
such information through HTTP, so any app can send re-
quest GET localhost:6667/v1/apps?running_apps and
the response contains the foreground app’s package name.
Such information is considered highly-sensitive in modern
Android system and should never be leaked to 3rd-party
apps (see discussion below).

(2) Launch our bogus activity. Once the target app is in the
foreground, our app immediately starts the prepared bogus
activity, which looks the same as that of the target app. This
step will also bring our malicious app to the foreground, so
its tab will be shown as active.

(3) Change active tab. Our app quickly sends a message to
WinShell, so that it will set the target app’s tab as ac-
tive. In MuMu, this message is an HTTP request POST
<hostAddr>:22471/player/tab with the data containing
the target app’s task ID (can be inferred), name, and so on.
Note that this message will only change tabs but not impact
the actual app states, so the user still sees our bogus activity
(as the previous step makes it in the foreground), but with the
target app’s tab as active. Since the steps could be executed
with negligible delays, the user can hardly notice the change.

The above attack is not the only way to hijack tab sessions.

For example, in some emulators, we can even manipulate tabs with
finer granularity, like specifying arbitrary icons, labels, and package
names. As a result, we can create a tab that shows a legitimate app’s
icon and label name, but binds to a malicious app, i.e., clicking the
tab will start the malicious app. With a phishing UI mimicking the
real one, the user will not be able to tell she is actually interacting
with a malicious app.
Discussion. Along with the tab hijacking issue, we found it is com-
mon that emulators disclose app states information. In addition to
the aforementioned MuMu, BlueStacks also leak app states by writ-
ing the current foreground app information to SystemProperty
which is publicly readable. LDPlayer will send an unprotected
Broadcast android.intent.action.TOP_ACTIVITY_ CHANGED con-
taining the foreground app’s package name whenever the top activ-
ity changes, which any app can learn using a BroadcastReceiver.
However, in AOSP, this app state information is treated as sensitive
and protected by a signature-level permission REAL_GET_TASKS.
Revealing this information will not only invade user’s privacy,
but also serve as the basis of various phishing attacks [35, 38, 67].
Recently, Possemato et al. even developed an automated system
to detect such vulnerabilities in Android [55], resulting in 6 CVEs.
Our result shows similar problems exist in the emulators.

4.4 Shell and ADB

Overly-Opened ADB. Android Debug Bridge (ADB) [7] is an
official tool to communicate with Android devices over USB or
network, and facilitate various actions like installing or debugging
apps, transferring files, and accessing the Linux shell on Android.
Once started, ADB starts daemon adbd on the Android phone which
acts as the server, and a client can connect to it via TCP. With its
powerful capabilities, ADB can also open the door for adversaries to
circumvent many of the security checks and measures of Android,
which has been analyzed by previous research [43].

On Android phones, ADB is designed for developers, so a series
of protection and warnings are designed to prevent normal end-
users from opening it. Specifically, the user must explicitly enable
developer mode and allow debugging on their devices before using
ADB functions, as shown in Figure 6. Also, the connection intention
must be confirmed by users. Since the emulators we study are
designed mainly for end-users, ADB should also be protected just
like on a real phone. Here we derived the following security policies
from AOSP that emulators should conform to:

e User should be able to disable/enable the ADB in emulator
settings (i.e., the global settings menu on host OS) or in
Android settings. It should be disabled by default.

e When a new ADB client is connected, a dialog should be
prompted for user consent.

e The ADB shell’s privilege should be limited (i.e., uid is
shell? rather than system or root).

We then examined how ADB is configured by emulators (shown
in Table 3). We found all emulators under our study come with
ADB functionalities, but surprisingly none of them adheres to the
above policies. They are all overly-opened, and for 4 of them, ADB

30fficial Android assigns uid shell to adbd. This uid has some privilege but is still
restricted from critical system resources.

< Developer options Q

Lock screen when trust is lost

If enabled, the device will lock when the
last trust agent loses trust

DEBUGGING
Allow USB debugging?

The computer's RSA key fingerprint is
5D:BC:80:68:F2:87:FE:DB:40:A1:58:0C:6D:
88:44:F8

USB debugging
Debug mode w ‘

when USB is connected

[[J Aways allow from this computer

Revoke USB debugging authorizations

Bug report shortcut Cancel Allow
Show a button in the power menu for
taking a bug report

Select mock location app
No mock location app set

Force full GNSS measurements
Track all GNSS constellations and
frequencies with no duty cycling

Enable view attribute inspection

Figure 6: Enable and confirm ADB connection.

Table 3: ADB features on emulators.

Emulator User Switch User Confirm Privilege
BlueStacks Yes™ i No shell
LDPlayer Yes* No root
MEmu No No root
MuMu No No root
NoxPlayer No No root
GameLoop No No root

*: Disabled by default.
¥: Warn users about security risks when being turned on.

cannot be turned off, and is always connectable by any client without
notification. In this case, a malicious app can connect to the server
adbd via local TCP connection and escalate its privilege.

Exposed Shell. Besides ADB, we found some emulators also
exposed other privileged shells to the attacker. As mentioned in
Section 2.2, there is usually a HostService daemon that receives mes-
sages from the host and performs corresponding actions. In most
cases, the vendors designed their own simple protocol to indicate
the command actions. But for some emulators, their HostService
also accepts inputs as an entire shell command, which runs in a
Linux shell with even the root privilege. For example, on MuMu
one app can send an HTTP request POST /tools/cmd to 6667
port with the body {"action": "run","params": {"command":
"<command>"}}, and from our reverse-engineering, we found this
command is executed by a root shell without any check.

One reason for vendors to introduce this shell is probably
for flexible updates. With the hard-coded command formats, the
vendors need to update both Windows and Android programs in
order to adjust/add features. But with this shell, this can be done
by a simple hot patch on the host. The shell is designed to run as
root so that all future features will be possible. This clearly violates

Android

| shell |<—| uid:root

cmd

adb adb
serve client

Figure 7: Emulator Shell & ADB Abusing Attack.

the “least privilege” principle, and it exposes all powerful shell
functionalities to malicious third-party apps.

Attack #5: God-Mode App (violates SG#1, 2, 3). By leveraging
the exposed shell or ADB service (as shown in Figure 7), a malicious
app could gain root privilege on Android. It extends the scope of
previous attacks which was originally impossible in some emulators.
For example, with system-level privilege, the attacker can directly
inject or sniff any input event into Android. Sniffing any network
traffic becomes possible (e.g., by using tcpdump [65] tool) as well.
The attacker can also remount read-only system partition into
writable one and modify critical system components. Or she can
also plant a permanent virus or backdoor to monitor and collect
privacy.

Discussion. The surprising openness of ADB made us wonder
about the design rationale. We found that although these emulators
try to attract end-users by providing an easy-to-use experience,
they are also trying to impress some “advanced” users and even
some developers by showing their highly-configurable features
and interfaces. These users may want to manage several different
game accounts at the same time, perform automated tasks, and
perform a bit of “hacking” to explore the system. This can be seen
from the multi-instance feature (running multiple Android systems
and perform batch operations) provided by these emulators, and
the ADB tutorials on their official websites (e.g., MuMu’s ADB
guide [3]). However, the problem is that they mixed the two types
of users, and sacrificed end-users’ security to exchange for the
convenience of advanced users.

While exploiting the ADB, we also tackled some obstacles by
utilizing the ports on the host OS. We found some emulators like
MEmu will start their own ADB server (not adbd, but a host-side
process used to manage communication between ADB client and
the adbd daemon4) and maintain the connection with adbd, which
might block new connection requests. To tackle the issue, the
malicious app could initiate a connection to the ADB server (usually
on port 5037) remotely instead (shown as the middle red line in
Figure 7). The ADB server allows multiple client connections and
further forwards ADB data to the adbd daemon on Android.

4.5 Other Functionalities

Screenshot. The screenshot could contain sensitive information
for the current app (e.g., user profile, chatting messages). Therefore,
capturing global screenshots from 3rd-party apps is considered

It is the official Android communication model [7].

dangerous and will be protected. However, with exposing the
features to the host, the emulators might leak the screen content to
adversaries as well. We evaluated all six emulators and found three
of them suffering from the issues, as shown in the “Screenshot”
column of Table 4. Besides, MuMu and Gameloop implement this
feature purely on Windows side, which do not introduce host-guest
communication (but the attack still works on MuMu through the
exposed shell as mentioned in Section 4.4). Note that the emulators
usually store the screenshot in the public folder so that attackers
can retrieve the images easily after injecting commands.
Low-risk Features. There are also other customized features that
involve the host-guest communication channels and might suffer
from similar design flaws. These functionalities may not be as
security-critical as the above ones, but once undermined, they can
still degrade user experience or assist other powerful attacks. For
instance, the emulators usually display “back”, “home”, “recent”
navigation buttons or “reboot” power button on the sidebar, which
will send the corresponding command to Android when being
clicked. We can inject these commands to emulators, and this
function alone can achieve a DoS attack. In another example,
the “shake” button on the emulator sidebar will make the virtual
accelerometer in Android produce a series of data simulating
a shake motion. We found some emulators use an unprotected
channel so that we can also inject motion events to Android. The
sidebar allows users to set the system’s location anywhere, and
the instruction is also sent through the channel. We can spoof the
command to change the system location on some emulators.

5 MEASUREMENTS

In this section, we summarize our findings across emulators under
each type of attack described in Section 4. The overall result is
shown in Table 4. We can see that the emulators show diversity
in their service implementations. Accordingly, our attacks are
implemented in different forms. Such diversity makes a unified
mitigation strategy challenging.

Attack on User Input. We found almost all emulators can be
exploited by a malicious app. For four out of six emulators, their
open channels enable attackers to inject arbitrary characters/words
to Android. Among them, NoxPlayer also can be injected with
touch events, so we can perform arbitrary operations on behalf of
the user, such as modifying app/system settings and performing
some in-app purchases. For two emulators, we can sniff or intercept
user’s input, meaning that we can steal user private information,
like account credentials. In particular, BlueStacks is vulnerable
to a complete MITM attack because we can inject inputs to its
IME server and manipulate the server port information (stored in
SystemProperty) to intercept the input messages (let them flow to
our malicious server) in the meantime.

Attack on App Installation. We found three emulators’ installa-
tion commands are transferred through unprotected HTTP/TCP
channels, indicating that attackers can install arbitrary APKs by-
passing the INSTALL_PACKAGES permission. Besides, we found that
uninstalling apps is also possible in these emulators. Consequently,
we can launch a phishing attack by uninstalling the target app and
installing our bogus one. Furthermore, five emulators expose their
ready-to-install APK files and directories to 3rd-party apps. And we

Table 4: Implementations of main functionalities by the emulators and corresponding attacks. “Host-guest”, “Local”, “Install
cmd” and “Top app info” columns indicate what channels are used in the corresponding implementation. “Attack” columns
show what attacks (or means of attack) are enabled.

Raw input event IME input Screenshot
Emulator Attack on Input
Host-guest Local Host-guest Local Host-guest Attack
BlueStacks Dev N/A Dev TCP+% IME input MITM HTTP+ by HTTP inject
LDPlayer Dev N/A Devi Broadcast® | sniff/intercept IME input Dev -
MEmu Dev uinput Dev TCP+ inject IME input Dev -
MuMu TCP uinput TCP+ N/A inject IME input - by shell
NoxPlayer UDP+ uinput TCP/UDPT N/A inject raw input, IME input TCP+ by TCP inject
GameLoop | Dev uinput Dev N/A - - -
App installation Tab management

Emulator

Install File/folder Attack Top app Guest-host Attack ADB & shell

cmd access info cmd
BlueStacks | HTTP+ no access uninstall + install SysProp* HTTP+ hijack tab session ADB**
LDPlayer | Devi rw/ro race condition Broadcast* Dev+ hijack tab session ADB**
MEmu Dev w/rw race condition - Dev - ADB
MuMu HTTP+ wW/rw uninstall + install HTTP+ HTTP+ hijack tab session ADB, shell
NoxPlayer | TCP rw/rw uninstall + install N/A N/A N/A ADB, shell
GameLoop | Dev rw/rw race condition N/A N/A N/A ADB

Flaw types: * = can sniff, += can inject (spoof), £= can intercept
**: with user switch

have successfully launched a more general installation hijacking
on three emulators by race condition attack, such that installation
functions of all studied emulators are vulnerable.

Attack on Tab Management. Except for the two emulators which
do not have tabs on Windows, we successfully implemented the
attack in Section 4.3 on three out of four emulators. They disclosed
the information of the foreground app in different ways, such
as sending Android Broadcasts, writing it in SystemProperty, or
putting it in the response of an HTTP request. Such information
tells the right timing for our attack. We could spoof the tab status
through the guest-to-host channel, leading to the inconsistency
between the tab and the corresponding app. For LDPlayer, we can
also spoof tabs to have the appearance (label name and icon) of
other apps but bind to our app, resulting in more flexible attacks.
Attack through ADB and Privileged Shell. In addition to
opened ADB (in Table 3), MuMu and NoxPlayer both expose root
shells and directly execute commands from the host messages,
which makes them extremely vulnerable to adversaries. Through
abusing ADB or exposed shell, all previous attacks could be enabled.
Special Cases. Although most emulators can be attacked by simple
steps such as sniffing, spoofing, reading/writing, some emulators
have made attempts to protect their communication links. We
noticed that BlueStacks actually added a 128-bit token verification to
the HTTP server, such that only requests with the correct token will
be processed. However, the token is not only a fixed value (will only
change after re-installation of BlueStacks), but also stored in public
SystemProperty. Therefore, in our attacks towards BlueStacks, we

will retrieve the token and append to each HTTP request header. We
noticed that the token is originally used to prevent fake commands
from the host side [2], but it becomes invalid in our attack model.

6 DISCUSSION

6.1 Responsible Disclosure

We have reported our findings to corresponding emulator vendors.
Among them, MuMu has confirmed our reported vulnerabilities
and patches will be released in the future. We also got positive
responses from BlueStacks and LDPlayer. They will improve and
update their products in the following versions. For the rest, we
are actively communicating with them to discuss and propose
mitigation solutions.

6.2 Lessons and Mitigation

Lessons Learned. The root cause of many vulnerabilities pre-
sented in this work is that emulator vendors failed to protect the
customized communication channels and privileged services they
introduced to Android. Previous research has demonstrated that
Android customization can introduce many security problems (see
Section 7). We believe the emulator developers should take extra
care to understand the Android security model and ensure the
newly introduced functionalities comply.

Meanwhile, the vendors need to understand their target users
and apply the least-privilege principle. Some privileged functions

such as ADB target advanced users (e.g., run shell script for batch
operations) and should not be opened by default.

Mitigation Suggestions. Based on the existing emulator architec-
ture and considering the necessity of customized communication
channels, here we give some mitigation suggestions. TCP/UDP
channels (HTTP is also over TCP) do not provide authentication and
encryption in the transport layer by default. Therefore, additional
application-layer protection should be deployed. For example,
SSL/TLS [1] is an immediate standard solution that is widely used
to enhance communication security. In addition to this, the data
encryption can be based on standard symmetric-key algorithms
like AES. The implementations of authentication are diverse, and
pre-shared secret (e.g., token or key) can be a lightweight approach.
The secret can be written into guest’s (Android) firmware before
initiating the guest when launching the emulator for the first time.

Also, virtual Linux devices should be protected by Linux user-
based access model or fine-grained access control mechanisms on
the driver. The Android IPC using Intent (Broadcast is also an Intent)
should specify specific permissions, as suggested by Chin et al. [36].
Alternatively, an additional system service could be introduced, and
it acts as an intermediary between apps and daemons to prevent
their direct communication [64]. The mutual connection requests
must be validated by this system service. Beyond that, the app
installation process should be handled with great care. We extend
the suggestions given by Lee et al. [47] and recommend the vendors
to store APK in private locations [48] and verify the hash values
of the target APK file before installation (comparing with the hash
value of the user-selected file on the host).

With the above measures taken, a malicious app can still escalate
its privilege using ADB. We suggest the vendors conform to the
ADB security policies mentioned in Section 4.4 to minimize the
chances of attackers. Furthermore, previous work [43] has also
suggested ADB defenses such as automatically disabling it when
idling, restricting ADB functionalities, and adding access checking
on the ADB server, which can also be applied to emulators. From
another aspect, extending the current ADB protocol is also a choice,
such as introducing the HMAC mechanism [52].

6.3 Limitations and Future Work

Extension of Threat Model. Our attacks are initiated from an
Android app within the emulator. This adversary model could be
extended to initiate the attacks from the host side. Because some
of our attacks are achieved by spoofing HTTP/TCP requests to
particular open ports on Android, which are also mapped to host
loopback network, host-side attackers could attack the same set of
ports with spoofing. One consequence is abusing the vulnerable
ADB service to monitor user activity, steal private data, or install
malicious Android app on the emulator, as described in Section 4.4.

Here we describe two approaches under this host-side setting.
1) As described in [2], the attacker might trick the user to visit
a malicious webpage (e.g., http://evil.com/ipc/command), and
change the website IP to 127.0.0.1 to launch a DNS rebinding
attack. When the emulator listens to localhost, the attacker’s
command could be executed. 2) The attacker can compromise a
Windows application and use it to relay commands to the emulator.
However, this approach might be less favorable, as the attacker

can directly break the integrity of the emulator (e.g., by accessing
emulator configure files, the whole Android image file on the host),
without the need of carefully crafting the attack packets.

Study Scope. We focused on the Windows versions of the studied
emulators because of the popularity of the Windows OS. Whether
the macOS versions are also vulnerable could be investigated
in the future. Besides, we focus on the security of end-user
emulators, while leaving out the developer-oriented emulators like
Genymotion [18] and “emulators" (i.e., Android image) requiring
manual installation on a VM like Bliss OS [14]. Extending the study
to them would require efforts in reverse-engineering their host-
guest communication interfaces or pre-installed apps, which are
non-trivial. We leave the investigation as a future task.
Vulnerability Discovery. In this study, most vulnerabilities are
discovered with manual reverse-engineering and verification. We
learned that different emulators use similar types of communication
channels and can be summarized by an abstract model, but their
architectures and implementation details are varied. For example,
the HostService daemon may either be implemented as a native
app (written by C/C++) or an Android app (written by Java), and
the same functionalities can be implemented in totally different
channels and protocols for different emulators. Therefore, it is
challenging to automate the analysis procedure. However, we
believe the discovered issues are relevant to other emulators not
studied in this paper, as long as they involve customized host-
guest communication. In the following, we discuss possible full or
semi-automation approaches for assisting vulnerability analysis
and identification.

Generally speaking, the emulator runs in the controlled en-
vironment within a host, where we can mimic and automate
user operations (like recognizing UI components, clicking sidebar
buttons through available desktop automation tools [13, 25]),
intercept network traffic, read/analyze log files, etc. In addition, we
have a privileged Android app within the emulator for inspecting
the Android system (e.g., using “dumpsys” tools [4] or through
API hooking) and loading dynamic tests. Below we describe how
different types of actions can be simulated to trigger abnormal
emulator behaviors.

o User Input. We could first send the normal user input (either
raw or IME input) to the emulator. Meanwhile, all network traffic
associated with the emulator and Android Intent events will be
collected. The content of user input and the network traffic will
be matched to pair the ones that are causally dependent. Previous
works [83, 84] have similar steps to identify vulnerabilities in online
services, which we could adapt to our analysis. Next, we try to replay
the network request or Android Intent from an attack app with
only normal permissions within the emulator. If the same content
is shown in the Android system (e.g., on the foreground input box),
we consider the emulator is potentially vulnerable.

o App Installation. We observed that when installing an app from
the host, the emulator usually utilizes the shared folder (between
Android and host OS) to transmit the target APK file. We could
extract the folder path from standard configuration or log files of the
VM/emulator. Then we will analyze the access permission settings
of the shared folder, its sub-folders, and the target APK file. If the
access permissions are too loose to allow replacing, overwriting,

or soft-linking on the target APK, we will simulate the installation
of a legitimate APK and launch the race condition attack in the
meantime. The installed package list will be monitored to see if the
installation procedure is hijacked.

o Tab Management. Similar to the above discussion on User Input,
we capture the network traffic relevant to tab generation and tab
status update. Next, we could open a random app and mutate the tab-
related request fields (e.g., package name, icon, status of activeness).
Then we send the mutated requests from the attack app and check
if the tab content/status (by some Windows UI tools on the host)
and the actual activity shown in the foreground (by dumping the
top activity information on Android) are inconsistent.

o ADB. Since the default ADB port is 5555 on Android, we could
use standard ADB protocol to probe the port (if the ADB port is
not constant, we can probe all open ports). We then verify whether
it satisfies the security policies in Section 4.4. It could be done by
monitoring and inspecting the Android pop-up dialog (a standard
Android View), and examining the uid/gid of the ADB shell.
Other Issues about Emulators. This paper analyzed the unique
host-guest communication mechanism of emulators. We acknowl-
edge that not all security issues are covered: e.g., the ones about the
standard components within Android OS and emulator’s own cloud
services like its membership service and app recommendation ser-
vice. Besides, we assume emulators are benign, but this assumption
may not hold. For example, the emulator may stealthily track users,
like what happens on the TV streaming devices [49].

7 RELATED WORK

In this section, we review the related work, including Android
customization, virtualization security, and emulator detection.
Android Customization. The stock firmware of Android phones
is often customized to deliver vendor-specific features. However,
such customization may introduce new vulnerabilities. For example,
Zhou et al. [82] discovered several flaws related to driver customiza-
tion, allowing an unauthorized app to take pictures and record the
user keystrokes on the touchscreen. Aafer et al. [26] found the
hanging attribute references flaw — when an attribute is used on a
device but the party defining it has been removed. Tian et al. [66]
focused on the security of AT (ATtention) commands, and new
AT commands that are constantly added into the stock firmware.
Aafer et al. [27] proposed DroidDiff to detect security configuration
changes introduced by the customization. Possemato et al. [54]
performed a longitudinal study on Android OEM customization,
focusing on SELinux configurations, system binaries hardening,
init scripts, and the Android Linux kernel.

In a related direction, some works studied the security of pre-
installed apps introduced by vendors. Wu et al. [73] studied the
permission over-privilege and privacy leakage of pre-installed apps.
Zheng et al. [81] designed DroidRay to detect the pre-installed
malware in firmware images. More recently, Elsabagh et al. [39]
studied the privilege-escalation vulnerabilities, and Gamba et
al. [41] explored the ecosystem of pre-installed apps.
Virtualization Security. Virtualization is the foundation of mod-
ern computing technologies, and their security issues have been
well studied on platforms like Windows, Linux, and cloud. The
major threat is the VM escape attack, which lets the attacker

interact with the host machine or other VMs outside of the
hosting sandbox [42]. Ristenpart et al. [57] discovered VM reset
vulnerabilities that affect the random number generators. On the
cloud environment, Rocha et al. [58] showed that a malicious
insider can steal confidential data of another cloud user, like
passwords, crypto keys. Other security risks, like VM rollback [75],
VM relocation [63], row hammer [77], multiple kinds of covert
channel [74, 76, 78] and side-channel [56, 79, 80] were also studied.
Our work looks into the security of Android emulator on a PC,
which has not been systematically studied before.

Emulator Detection. To detect Android malware, one common
approach is to run apps in a controlled emulator and expose the
malicious behaviors. To evade such defense, malware can detect the
presence of the emulator and hide its malicious behaviors. Vidas et
al. [68] presented a number of ways to detect Android emulators,
including the differences in behavior, performance, hardware, and
software components. A similar work was conducted by Petsas
et al. [53], which found trivial techniques were enough to evade
some dynamic analysis. Jing et al. [44] presented Morpheus, a
system that automatically generates emulator detection heuristics.
It can retrieve observable artifacts from both emulators and real
devices. Sahin et al. [60] uncovered the detection methods based on
discrepancies in instruction-level behavior between software-based
emulators and real ARM CPUs. Though also targeting emulator
security, this direction is orthogonal to our work.

8 CONCLUSION

Android emulator enables people to run mobile apps on the desktop
environment, thus providing users with a better experience under
some scenarios. Millions of users, especially gamers, choose to
use emulators, and attackers are also seeing the emulator as a
lucrative target. In this paper, we uncovered the unique architecture
of Android emulators that incorporates communication channels
between host OS and Android OS. These channels are used
for supporting various emulator functionalities (e.g., keyboard
mapping). We found that these services are usually not adequately
protected in Android, so attackers could easily exploit them to
escalate their privileges within the emulator. To demonstrate the
security consequences of such flaws, we further came up with five
attacks targeting four main functionalities of Android emulators.
Through these attacks, we could stealthily collect sensitive user
logs, steal account credentials and even get root privilege of the
system. We measured the flaws on six popular emulators and found
the issues are prevalent. Through our research, we hope to raise the
awareness of emulator vendors and users and advance the relevant
studies on the security of the emulator ecosystem.

ACKNOWLEDGMENTS

We want to thank our shepherd Giiliz Seray Tuncay and all the
anonymous reviewers for their valuable comments. This work
was supported in part by National Key Research & Development
Project of China (Grant No. 2019YFB1804400), and Hong Kong
S.AR. Research Grants Council (RGC) General Research Fund No.
14209720. Wenrui Diao was partially supported by National Natural
Science Foundation of China (Grant No. 61902148). Zhou Li was
partially supported by gift from Cisco and Microsoft.

REFERENCES

(1]
(2]

(3]

[11

[12]
(13
[14]
[15]

[16

[17]

[18

[19]

[20

[21]

[23

[24]

[25

[26]

[27]

[28]

[29

[30

[31

[32

[33]

2018. The Transport Layer Security (TLS) Protocol Version 1.3. Retrieved May 7,
2021 from https://tools.ietf.org/html/rfc8446

2019. BlueStacks Flaw Lets Attackers Remotely Control Android Emulator.
Retrieved August 15, 2021 from https://www.bleepingcomputer.com/new
s/security/bluestacks-flaw-lets-attackers-remotely-control-android-emulator/
2019. DeveloperGuide of MuMu (in Chinese). Retrieved May 7, 2021 from http:
//mumu.163.com/help/func/20190129/30131_797867.html

2020. dumpsys | Android Developers. Retrieved August 15, 2021 from https:
//developer.android.com/studio/command-line/dumpsys

2020. How to stream PUBG Mobile on YouTube with laptop. Retrieved May 7, 2021
from https://www.sportskeeda.com/esports/how- stream-pubg-mobile-youtube-
laptop

2021. Anbox - Android in a Box. Retrieved May 7, 2021 from https://anbox.io/
2021. Android Debug Bridge (adb) | Android Developers. Retrieved May 7, 2021
from https://developer.android.com/studio/command-line/adb

2021. Android Emulators Wiki. Retrieved May 7, 2021 from https://emulation.ga
metechwiki.com/index.php/Android_emulators

2021. Android Input. Retrieved May 7, 2021 from https://source.android.com/dev
ices/input

2021. Android Open Source Project. Retrieved May 7, 2021 from https://source.a
ndroid.com/

2021. Android Studio. Retrieved May 7, 2021 from https://developer.android.co
m/studio

2021. Application Fundamentals | Android Developers. Retrieved May 7, 2021
from https://developer.android.com/guide/components/fundamentals

2021. AutoHotKey. Retrieved August 15, 2021 from https://www.autohotkey.com/
2021. Bliss OS. Retrieved May 7, 2021 from https://blissos.org/

2021. BlueStacks — Fastest Android Emulator for PC & Mac [100% Safe and FREE.
Retrieved May 7, 2021 from https://www.bluestacks.com/

2021. Cooperation with NetEase MuMu (in Chinese). Retrieved May 7, 2021 from
http://mumu.163.com/2016/12/15/25241_661774.html

2021. core/java/android/os/SystemProperties.java - platform/frameworks/base - Git
at Google. Retrieved May 7, 2021 from https://android.googlesource.com/platfor
m/frameworks/base/+/master/core/java/android/os/SystemProperties.java
2021. Genymotion Android Emulator | Cloud-based Android virtual devices | Develop
- Automate your tests - Validate with confidence. Retrieved May 7, 2021 from
https://www.genymotion.com/

2021. Intent and Intent Filters | Android Developers. Retrieved May 7, 2021 from
https://developer.android.com/guide/components/intents-filters

2021. LDPlayer - Fastest Android Emulator for PC, Free Download. Retrieved May
7, 2021 from https://www.ldplayer.net/

2021. Linux Uinput. Retrieved May 7, 2021 from https://www.kernel.org/doc/h
tml/v4.12/input/uinput.html

2021. MEmu - The Best Android Emulator for PC - Free Download. Retrieved May
7, 2021 from https://www.memuplay.com/

2021. Oracle VM VirtualBox. Retrieved May 7, 2021 from https://www.virtualb
ox.org/

2021. PC Android Emulator for PUBG, CODM - GameLoop. Retrieved May 7, 2021
from https://www.gameloop.com/en?adtag=default

2021. Top Free Automation Tools for Testing Desktop Applications (2021). Retrieved
August 15, 2021 from https://testguild.com/automation-tools-desktop/

Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng
Wang, Xiao-yong Zhou, Wenliang Du, and Michael Grace. 2015. Hare Hunting
in the Wild Android: A Study on the Threat of Hanging Attribute References. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), Denver, CO, USA, October 12-16, 2015.

Yousra Aafer, Xiao Zhang, and Wenliang Du. 2016. Harvesting Inconsistent
Security Configurations in Custom Android ROMs via Differential Analysis. In
Proceedings of the 25th USENIX Security Symposium (USENIX-Sec), Austin, TX,
USA, August 10-12, 2016.

Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick D. McDaniel,
and Matthew Smith. 2016. SoK: Lessons Learned from Android Security Research
for Appified Software Platforms. In Proceedings of the 37th IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016.

Akamai. 2020. Akamai Report Reveals Broad, Persistent Cyber Attacks Targeting
Video Game Players and Companies. Retrieved May 7, 2021 from https://www.pr
newswire.com/news-releases/akamai-report-reveals-broad-persistent-cyber-
attacks-targeting-video- game-players-and-companies-301136183.html
Android. 2021. AccessibilityService | Android Developers. Retrieved May 7, 2021
from https://developer.android.com/reference/android/accessibilityservice/Acc
essibilityService

Android. 2021. Configure on-device developer options. Retrieved May 7, 2021
from https://developer.android.com/studio/debug/dev-options

Android. 2021. Permissions on Android | Android Developers. Retrieved May 7,
2021 from https://developer.android.com/guide/topics/permissions/overview
Android. 2021. Services overview. Retrieved May 7, 2021 from https://developer.
android.com/guide/components/services

(34

[35

[36

[38

[39

S
=

[41

[42

[43

[44

[45

[46

[47

[49]

[50]

[51

o
S

[53

Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion. In Proceedings of the 6th USENIX Workshop on
Hot Topics in Security (HotSec), San Francisco, CA, USA, August 9, 2011.

Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. 2014. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel Android Attacks. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. 2011.
Analyzing Inter-application Communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys),
Bethesda, MD, USA, June 28 - July 01, 2011.

Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2015. Keyboard
or keylogger?: A security analysis of third-party keyboards on Android. In
Proceedings of the 13th Annual Conference on Privacy, Security and Trust (PST),
Izmir, Turkey, July 21-23, 2015.

Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. No Pardon for
the Interruption: New Inference Attacks on Android Through Interrupt Timing
Analysis. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA,
May 22-26, 2016.

Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan
Zhao, and Zhiqiang Lin. 2020. FIRMSCOPE: Automatic Uncovering of Privilege-
Escalation Vulnerabilities in Pre-Installed Apps in Android Firmware. In Pro-
ceedings of the 29th USENIX Security Symposium (USENIX-Sec), August 12-14,
2020.

Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. 2017.
Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, USA, May 22-26, 2017.

Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. 2020. An Analysis of Pre-installed Android Software.
In Proceedings of the 2020 IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, May 18-21, 2020.

Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. 2011. Understanding
Cloud Computing Vulnerabilities. IEEE Security & Privacy Magazine 9, 2 (2011),
50-57.

Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu. 2015. Bittersweet
ADB: Attacks and Defenses. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security (AsiaCCS), Singapore, April
14-17, 2015.

Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. 2014. Morpheus:
Automatically Generating Heuristics to Detect Android Emulators. In Proceedings
of the 30th Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, USA, December 8-12, 2014.

Swati Khandelwal. 2015. Minecraft hacked! More than 1800 Minecraft account
Credentials Leaked. Retrieved May 7, 2021 from https://thehackernews.com/20
15/01/minecraft-game-hacked.html

Swati Khandelwal. 2019. Exclusive — Hacker Steals Over 218 Million Zynga "Words
with Friends’ Gamers Data. Retrieved May 7, 2021 from https://thehackernews.
com/2019/09/zynga-game-hacking.html

Yeonjoon Lee, Tongxin Li, Nan Zhang, Soteris Demetriou, Mingming Zha,
XiaoFeng Wang, Kai Chen, Xiao-yong Zhou, Xinhui Han, and Michael Grace.
2017. Ghost Installer in the Shadow: Security Analysis of App Installation on
Android. In Proceedings of the 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Denver, CO, USA, June 26-29, 2017.
Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. 2015. An
Empirical Study on Android for Saving Non-shared Data on Public Storage. In ICT
Systems Security and Privacy Protection - 30th IFIP TC 11 International Conference,
SEC 2015, Hamburg, Germany, May 26-28, 2015, Proceedings.

Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess, Arunesh Mathur,
Danny Yuxing Huang, Nick Feamster, Edward W. Felten, Prateek Mittal, and
Arvind Narayanan. 2019. Watching You Watch: The Tracking Ecosystem of Over-
the-Top TV Streaming Devices. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), London, UK, November 11-15,
2019.

Shane Monroe. 2017. Quora: Is it safe and secure to log into an Android Emulator
. Retrieved May 7, 2021 from https://www.quora.com/Is-it-safe-and-secure-
to-log-into-an- Android-Emulator-Bluestacks- or-NOX- App-Player-using-my-
Google-account-on-my-PC

Nox. 2021. About Nox. Retrieved March 2, 2021 from https://www.bignox.com/a
bout

Krzysztof Opasiak and Wojciech Mazurczyk. 2019. (In)Secure Android Debugging:
Security analysis and lessons learned. Computer & Security 82 (2019), 80-98.
Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. 2014. Rage Against the Virtual Machine: Hindering
Dynamic Analysis of Android Malware. In Proceedings of the Seventh European
Workshop on System Security (EuroSec), Amsterdam, The Netherlands, April 13,
2014.

https://tools.ietf.org/html/rfc8446
https://www.bleepingcomputer.com/news/security/bluestacks-flaw-lets-attackers-remotely-control-android-emulator/
https://www.bleepingcomputer.com/news/security/bluestacks-flaw-lets-attackers-remotely-control-android-emulator/
http://mumu.163.com/help/func/20190129/30131_797867.html
http://mumu.163.com/help/func/20190129/30131_797867.html
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/studio/command-line/dumpsys
https://www.sportskeeda.com/esports/how-stream-pubg-mobile-youtube-laptop
https://www.sportskeeda.com/esports/how-stream-pubg-mobile-youtube-laptop
https://anbox.io/
https://developer.android.com/studio/command-line/adb
https://emulation.gametechwiki.com/index.php/Android_emulators
https://emulation.gametechwiki.com/index.php/Android_emulators
https://source.android.com/devices/input
https://source.android.com/devices/input
https://source.android.com/
https://source.android.com/
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/guide/components/fundamentals
https://www.autohotkey.com/
https://blissos.org/
https://www.bluestacks.com/
http://mumu.163.com/2016/12/15/25241_661774.html
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/SystemProperties.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/os/SystemProperties.java
https://www.genymotion.com/
https://developer.android.com/guide/components/intents-filters
https://www.ldplayer.net/
https://www.kernel.org/doc/html/v4.12/input/uinput.html
https://www.kernel.org/doc/html/v4.12/input/uinput.html
https://www.memuplay.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.gameloop.com/en?adtag=default
https://testguild.com/automation-tools-desktop/
https://www.prnewswire.com/news-releases/akamai-report-reveals-broad-persistent-cyber-attacks-targeting-video-game-players-and-companies-301136183.html
https://www.prnewswire.com/news-releases/akamai-report-reveals-broad-persistent-cyber-attacks-targeting-video-game-players-and-companies-301136183.html
https://www.prnewswire.com/news-releases/akamai-report-reveals-broad-persistent-cyber-attacks-targeting-video-game-players-and-companies-301136183.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://thehackernews.com/2015/01/minecraft-game-hacked.html
https://thehackernews.com/2015/01/minecraft-game-hacked.html
https://thehackernews.com/2019/09/zynga-game-hacking.html
https://thehackernews.com/2019/09/zynga-game-hacking.html
https://www.quora.com/Is-it-safe-and-secure-to-log-into-an-Android-Emulator-Bluestacks-or-NOX-App-Player-using-my-Google-account-on-my-PC
https://www.quora.com/Is-it-safe-and-secure-to-log-into-an-Android-Emulator-Bluestacks-or-NOX-App-Player-using-my-Google-account-on-my-PC
https://www.quora.com/Is-it-safe-and-secure-to-log-into-an-Android-Emulator-Bluestacks-or-NOX-App-Player-using-my-Google-account-on-my-PC
https://www.bignox.com/about
https://www.bignox.com/about

(54

[55

[56

o
)

[58]

[59]

(60

[61

[62

[63]

[65

[66]

[67]

[68]

Andrea Possemato, Simone Aonzo, Davide Balzarotti, and Yanick Fratantonio.
2021. Trust, But Verify: A Longitudinal Analysis Of Android OEM Compliance
and Customization. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy (Oakland), Online, May 23-27, 2021.

Andrea Possemato, Dario Nisi, and Yanick Fratantonio. 2021. Preventing and
Detecting State Inference Attacks on Android. In Proceedings of the 2021 Network
and Distributed System Security Symposium (NDSS), Virtual, 21st - 25th February,
2021.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the 2009 ACM Conference on Computer and
Communications Security (CCS), Chicago, Illinois, USA, November 9-13, 2009.
Thomas Ristenpart and Scott Yilek. 2010. When Good Randomness Goes Bad:
Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography.
In Proceedings of the 17th Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, 28th February - 3rd March, 2010.

Francisco Rocha and Miguel Correia. 2011. Lucy in the Sky without Diamonds:
Stealing Confidential Data in the Cloud. In Proceedings of the 2011 IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W), Hong Kong, China, June 27-30, 2011.

Elena Root and Andrey Polkovnichenko. 2019. SimBad: A Rogue Adware
Campaign On Google Play - Check Point Research. Retrieved May 7, 2021 from
https://research.checkpoint.com/2019/simbad-a-rogue-adware-campaign-on-
google-play/

Onur Sahin, Ayse K. Coskun, and Manuel Egele. 2018. Proteus: Detecting Android
Emulators from Instruction-Level Profiles. In Proceedings of the 21st International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID), Heraklion,
Crete, Greece, September 10-12, 2018.

Ignacio Sanmillan. 2021. Operation NightScout: Supply-chain attack targets online
gaming in Asia | WeLiveSecurity. Retrieved May 7, 2021 from https://www.weli
vesecurity.com/2021/02/01/operation-nightscout- supply-chain-attack-online-
gaming-asia/

Help Net Security. 2020. What’s trending on the underground market? Retrieved
May 7, 2021 from https://www.helpnetsecurity.com/2020/05/27/underground-
market-trends/

Saeed Shafieian, Mohammad Zulkernine, and Anwar Haque. 2014. Attacks in
Public Clouds: Can They Hinder the Rise of the Cloud? In Cloud Computing.
Springer, 3-22.

Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Zhuoqing Morley Mao.
2016. The Misuse of Android Unix Domain Sockets and Security Implications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS), Vienna, Austria, October 24-28, 2016.

tepdump. 2021. TCPDUMP/LIBPCAP public repository. Retrieved May 7, 2021
from https://www.tcpdump.org/

Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi, Vanessa Frost, Christie
Ruales, Patrick Traynor, Hayawardh Vijayakumar, Lee Harrison, Amir Rahmati,
Michael Grace, and Kevin R. B. Butler. 2018. ATtention Spanned: Comprehensive
Vulnerability Analysis of AT Commands Within the Android Ecosystem. In
Proceedings of the 27th USENIX Security Symposium (USENIX-Sec), Baltimore, MD,
USA, August 15-17, 2018.

Giiliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. 2020. See No Evil: Phishing
for Permissions with False Transparency. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020.

Timothy Vidas and Nicolas Christin. 2014. Evading Android Runtime Analysis
via Sandbox Detection. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security (AsiaCCS), Kyoto, Japan, June 03 - 06,
2014.

[69

[70

(71

[72

(74

[75

[76

[77

<
&,

[79

(80

(81]

(82

[83

[84

VirtualBox. 2020. PDM.cpp in vbox/trunk/src/VBox/VMM/VMMR3 — Oracle VM
VirtualBox. Retrieved May 7, 2021 from https://www.virtualbox.org/browser/v
box/trunk/src/VBox/VMM/VMMR3/PDM.cpp

VirtualBox. 2021. VBoxHeadless, the Remote Desktop Server. Retrieved May 7,
2021 from https://www.virtualbox.org/manual/ch07.html#vboxheadless
Wireshark. 2021. Wireshark Go Deep. Retrieved May 7, 2021 from https:
//www.wireshark.org/

Daoyuan Wu, Debin Gao, Rocky K. C. Chang, En He, Eric K. T. Cheng, and
Robert H. Deng. 2019. Understanding Open Ports in Android Applications:
Discovery, Diagnosis, and Security Assessment. In 26th Annual Network and
Distributed System Security Symposium, NDSS.

Lei Wu, Michael C. Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013.
The Impact of Vendor Customizations on Android Security. In Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security (CCS),
Berlin, Germany, November 4-8, 2013.

Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In Proceedings of the 21th
USENIX Security Symposium (USENIX-Sec), Bellevue, WA, USA, August 8-10, 2012.
Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. Defending against VM

Rollback Attack. In Proceedings of the 2012 IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), Boston, MA, USA, June

25-28, 2012.

Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. 2012. A Covert Channel
Construction in a Virtualized Environment. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS), Raleigh, NC, USA,
October 16-18, 2012.

Yuan Xiao, Xiaokuan Zhang, Yingian Zhang, and Radu Teodorescu. 2016. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation.
In Proceedings of the 25th USENIX Security Symposium (USENIX-Sec), Austin, TX,
USA, August 10-12, 2016.

Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh R. Joshi, Matti A.
Hiltunen, and Richard D. Schlichting. 2011. An Exploration of L2 Cache Covert
Channels in Virtualized Environments. In Proceedings of the 3rd ACM Cloud
Computing Security Workshop (CCSW), Chicago, IL, USA, October 21, 2011.
Yingian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy (Oakland), Berkeley, California,
USA, 22-25 May, 2011.

Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS), Raleigh,
NC, USA, October 16-18, 2012.

Min Zheng, Mingshen Sun, and John C. S. Lui. 2014. DroidRay: A Security
Evaluation System for Customized Android Firmwares. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security
(AsiaCCS), Kyoto, Japan, June 03 - 06, 2014.

Xiao-yong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The Peril of Fragmentation: Security Hazards in Android Device
Driver Customizations. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy (Oakland), Berkeley, CA, USA, May 18-21, 2014.

Chaoshun Zuo, Wubing Wang, Zhiqiang Lin, and Rui Wang. 2016. Automatic
Forgery of Cryptographically Consistent Messages to Identify Security Vulnera-
bilities in Mobile Services. In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016.
Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. AUTHSCOPE:
Towards Automatic Discovery of Vulnerable Authorizations in Online Services. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.

https://research.checkpoint.com/2019/simbad-a-rogue-adware-campaign-on-google-play/
https://research.checkpoint.com/2019/simbad-a-rogue-adware-campaign-on-google-play/
https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://www.helpnetsecurity.com/2020/05/27/underground-market-trends/
https://www.helpnetsecurity.com/2020/05/27/underground-market-trends/
https://www.tcpdump.org/
https://www.virtualbox.org/browser/vbox/trunk/src/VBox/VMM/VMMR3/PDM.cpp
https://www.virtualbox.org/browser/vbox/trunk/src/VBox/VMM/VMMR3/PDM.cpp
https://www.virtualbox.org/manual/ch07.html#vboxheadless
https://www.wireshark.org/
https://www.wireshark.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Android Emulator Types
	2.2 Emulator Architecture

	3 Problem Overview and Analysis
	3.1 Threat Model
	3.2 Security Analysis

	4 Flaws and Attacks
	4.1 User Input
	4.2 App Installation
	4.3 Tab Management
	4.4 Shell and ADB
	4.5 Other Functionalities

	5 Measurements
	6 Discussion
	6.1 Responsible Disclosure
	6.2 Lessons and Mitigation
	6.3 Limitations and Future Work

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

