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Abstract—Cache side-channel attacks lead to severe security
threats to the settings where a CPU is shared across users, e.g.,
in the cloud. The majority of attacks rely on sensing the micro-
architectural state changes made by victims, but this assumption
can be invalidated by combining spatial (e.g., Intel CAT) and
temporal isolation. In this work, we advance the state of cache
side-channel attacks by showing stateless cache side-channel
attacks on server-grade CPUs, that can bypass both spatial and
temporal isolation.

Unlike stateful cache side-channel attacks that rely on the
timing difference between a cache hit or miss, our attack exploits
the timing difference caused by the interconnect congestion.
Specifically, to complete cache transactions, for Intel server CPUs,
which use non-inclusive and mesh interconnect, cache lines would
travel across cores via the CPU mesh and UPI interconnects.
Nonetheless, the interconnects are shared by all cores, and
cache isolation does not segregate the traffic. An attacker can
generate traffic to contend with a victim on a link, measure the
extra delay, deduce the memory access pattern of the victim’s
program, and infer its sensitive data. Based on this idea, we
implement MESHUP, a stateless cache side-channel against mesh
interconnect, and test it against the existing RSA implementations
of JDK for the cross-core attack and application fingerprinting
for the the cross-CPU attack. We found the RSA private key used
by a victim process can be partially recovered and the co-running
application can be inferred at high accuracy.

I. INTRODUCTION

Memory isolation is one of the fundamental security prin-
ciples to protect sensitive information. Yet, memory isolation
does not protect the computing resources, like cache, resulting
in side-channel attacks under machine sharing scenarios, e.g.,
in the cloud. By timing the interval of accessing a cache line,
existing cache attacks learn whether the associated memory
addresses have been loaded by a victim program, and further
deduce sensitive information. Many techniques have been
proposed, like FLUSH+RELOAD [1], PRIME+PROBE [2], and
the recent Xlate [3], based on different assumptions, e.g., using
shared libraries [1], sharing LLC (Last-level Cache) across
cores [4], or MMU (Memory Management Units), etc.

These attacks can be categorized into stateful cache attacks,
as the victim program introduces micro-architectural state
changes that can be sensed by an attacker [5], e.g., through
creating eviction sets. However, this attack condition may
not be fulfilled nowadays due to the rise of spatial and
temporal isolation. For example, Intel Xeon CPUs introduce
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Cache Allocation Technique (CAT) [6], which was designed
to maintain QoS of cache usage, but later found to be a
panacea for cache attacks [7]. CAT assigns LLC cache ways
to cores exclusively, which spatially isolate LLC and break
attacks based on eviction set conflict on LLC (e.g., [4]).
Temporal isolation [5] provides more principled protection,
which is effective against nearly every cache attack with the
existing hardware support.
Stateless Cache Side-channel Attack. Although spatial and
temporal isolation can eliminate the root cause of cache side-
channel attacks, or micro-architectural state change, stateless
cache side-channel attacks could bypass both of them. One
such stateless channel is the CPU interconnect, which links
different CPU units like cache and cores. Due to the complex
interplay between these CPU units, it is possible that cache
access can be observed on the interconnect by an adversary. In
fact, a recent work [8] showed that the CPU ring interconnect
can be exploited to launch stateless attacks. Ring interconnect
is prevalent in consumer-grade CPUs, but not in server-grade
CPUs. Whether these server-grade CPUs, which are more
relevant to the cloud settings, are vulnerable is unclear.

In this work, we explore the attack surface on the server-
grade CPUs. By investigating the latest architecture of Intel
server CPU, e.g., Xeon Scalable Processor (SP) [9], we found
that cores and uncore units inside a CPU are connected
with mesh, constituting an NoC (Network on Chip). Besides,
different CPUs are also linked with an interconnect, i.e.,
UPI (Ultra Path Interconnect)1. Although these interconnects
showed a great advantage in latency and bandwidth on multi-
core CPUs [10], [11], they could leak information about the
memory access pattern of a program, because of the timing
difference resulting from congestion on those interconnects.

Based on this insight, we propose MESHUP, a new stateless
cache side-channel attack against CPU interconnects. Our
key idea is to let a core occupied by an attacker program
keep probing the path that the cache transactions of a victim
program might pass by, and measure the delay. When the
core occupied by the victim program accesses a remote cache
agent, the accumulated mesh traffic volume will rise, hence
increasing the delays observed by the attacker. By probing the
interconnects at high frequency, the attacker could deduce the

1UPI is also used as interconnect inside CPU by extreme high-end CPUs,
e.g., Xeon 9200 series.



victim’s secret with the delay traces.
Challenges. Still implementing the idea of MESHUP is chal-
lenging. 1) We assume the attack can be executed on a cloud
VM, which prohibits an attacker to choose a core or mesh
path at his/her will. 2) There is no API to let a program direct
mesh packets to a given target and the information retained
from mesh congestion is expected to be coarse-grained (i.e., it
does not tell which cache lines are conflicted). 3) Cross-CPU
attack is even more difficult as there are more units involved.
Attack Techniques. We have investigated the side-channel
leakages in both cross-core and cross-CPU settings. For the
first case, we develop a new eviction-based probe, which
allows an attacker to probe a mesh route and measure the
delays. In particular, our approach constructs an L2 eviction
set, which can be mapped to the desired LLC slice, and
contained in an L2 set. To notice is that the eviction set
does not conflict with the victim. It is only used to cause
cache eviction and generate mesh traffic. Therefore, defenses
trying to prevent adversarial cache eviction can be evaded.
For the second case, we found that, though the eviction-based
probe cannot reliably generate the cross-CPU traffic, cache
synchronization by two CPUs could introduce a high volume
of traffic, and congest the link. Hence, we develop a new
coherence-based probe for cross-CPU attacks. Our analysis
of the two probes shows they can achieve good temporal
resolution, high Signal to Noise Ratio (SNR), and spatial
resolution that allows the attacker to contend to the victim’s
traffic even starting off from a random core.

As a showcase for the attack effectiveness, we analyzed
the Sliding Window algorithm of RSA with the eviction-
based probe to recover 2048-bit private RSA keys. On the
off-the-shelf implementation of JDK, the attacker can recover
over 31% of the 2048 bits, with the help of a cryptographic
method [12]. For the cross-CPU attack, we assume a victim
runs an application (app) in server, and let the attacker infer
which app the victim is running, with the coherence-based
probe. The attacker has over 82% accuracy in recognizing the
apps co-located on the machine.
Contributions. We summarize the main contribution of our
work as follows.
• We identify a new security implication of server-grade

CPU interconnects, and show it can be exploited to
construct a powerful stateless side-channel.

• We develop MESHUP, using cache eviction and cache
synchronization as probe techniques to conduct cross-
core and cross-CPU cache side-channel attacks.

• We systematically analyze the properties of MESHUP
channels.

• To show the consequences of MESHUP, we evaluate it
with RSA key recovery and app fingerprinting.

II. BACKGROUND AND RELATED WORKS

In this work, we investigate the security of the cache archi-
tecture of Intel Xeon Scalable Processors (SP) [9], which have
gained a prominent market share in cloud computing [13]. We

first overview their cache design. Then, we introduce the prior
cache side-channel attacks. Finally, we overview the research
of stateless channels that serve as our attack primitives.

A. Architecture of Intel Xeon SP
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Fig. 1: Comparison between ring-bus and mesh structures. Not
all cores/components are drawn to save space.

Mesh Interconnect. When a CPU chip contains multiple
cores, the connection topology among them, or on-chip in-
terconnect, is a key factor determining the CPU performance.
The old design of interconnect (e.g., in Intel Xeon E5 and Intel
Core) mimics the multiprocessor architecture, in that a shared
ring-bus connects all cores together [14], as illustrated in
Figure 1 left. However, the core-to-core latency could increase
linearly along with the growth of cores within one CPU die,
because the communication between two cores could be routed
through all other cores.

Since Xeon Skylake-SP server CPU family [15] (released
in 2017), Intel revamped the interconnect design with mesh,
which is also adopted by the latest generation of Intel server
CPUs, e.g., Xeon Icelake-SP, and expected to be the default
design in the near future [16]. Besides Intel CPUs, mesh
interconnect has also been adopted by other processors, like
Tile Processors [10], [17], [11], and ARM server CPUs [18]. In
essence, the chip is structured as a 2D matrix of tiles [19] and
each tile either consists of a core (together with cache), or an
uncore component like IMC (Integrated Memory Controller),
UPI (Ultra Path Interconnect) controller, and I/O unit. Each
tile is connected to its vertical and horizontal neighbors, and
the traffic of each direction (in total 4) is managed through a
mesh stop inside the tile. Figure 1 right illustrates the mesh
structure. Mesh interconnect caps the core-to-core latency at a
much lower rate, because the number of hops between any pair
of tiles is only proportional to the square root of the number
of tiles, which satisfies the growth of core density.
UPI. To further increase core density, Intel allows linking
CPUs on different sockets with UPI connection [20], which
wires UPI mesh stops from different CPUs. One CPU can have
up to 3 UPI stops. Cross-socket mesh traffic firstly reaches the
UPI stop of the originating CPU via mesh, and then will be
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forwarded to the UPI stop of the destination CPU. At last, the
UPI stop forwards it to the destination mesh tile.
Cache Hierarchy. Modern processors all feature a hierarchy
of cache to localize the frequently accessed data and code,
in order to reduce the access latency. Each core has its own
private cache, e.g., L1 and L2 cache. And there is also L3
cache, or last-level cache (LLC), which is shared across cores.

Xeon SP breaks LLC into slices and evenly distribute them
among cores. As shown in Figure 1 right, each tile consists of
a core (with L1 and L2 embedded), a LLC slice, a Snoop Filter
(SF) and a Cache Home Agent (CHA). Appendix A describe
the cache configurations of Intel Skylake-SP.

How a memory address maps to a cache line depends on the
set index of the address. Intel has a proprietary hash algorithm
to do the mapping. We illustrate the structure under Xeon SP
in Figure 9 in Appendix A, summarized from [21], [22].
Cache Coherence. As the same address can be read/write by
different cores, the cache should be kept coherent to avoid the
access of outdated data. To this end, Intel uses the MESIF
(Modified, Exclusive, Shared, Invalid, Forward) protocol [23]
for cache coherence, managing five cache states. “Modified”
means the line is in the private cache of the owing core
and is dirty as it has been written. “Exclusive” indicates the
line is stored in a single core. “Shared” means the line is
potentially shared by multiple cores. “Invalid” means the line
is not in cache. “Forward” suggests the core holding the line
is responsible to forward the line to cores reading the line.

The CHA is responsible for coordinating all the cores and
maintaining the coherence. For example, when a requesting
core requests to write a cache line that is cached by another
core (or caching core) in the Exclusive state, the CHA will ask
the caching core to send the line to the requesting core and turn
the state to Invalid, as a line can only be writable to one core.
After this, the requesting core can turn the state of the line to
Exclusive. In Section V-B, we exploit the messages delivered
under the MESIF protocol as a side-channel for cross-CPU
attacks.

B. Cache Side-channel Attack

Cache side-channel attack bypasses memory isolation and it
is particularly concerning in the cloud setting, where multiple
users share the same physical machine [4], [24], [25]. Below
we overview the existing attack methods, and classify them
by whether they assume memory sharing between victim and
attacker. The overview is not meant to be exhaustive and we
refer interested readers to surveys like [26].
Sharing Memory. Running processes often share identical
memory pages to save memory. Shared memory leads to
shared cache, and FLUSH+RELOAD exploits such a condition
for cache side-channel attack. It takes three steps. First, the
attacker sets all the cache lines mapped to the shared memory
as invalid, by using cache clearance instruction clflush.
Then, the attacker waits a period of time for the victim to
access the shared memory. Finally, the attacker accesses the
shared memory and counts the cycles (e.g., through rdtsc)

to measure the latency, and infer the code/data access pattern
of the victim.

FLUSH+RELOAD has been demonstrated effective on
LLC [1] of a PC and cloud instances [24], resulting in leakage
of encryption keys [25] and keystroke events [27]. It has been
evolved to variations [26] like FLUSH+FLUSH [28], which
is stealthier by avoiding the extra memory access. On the
other hand, this attack can be mitigated when clflush is
banned [29]. To address this limitation, EVICT+RELOAD [30]
was proposed, which uses cache conflicts as a replacement for
clflush.
Not Sharing Memory. When memory is not shared, an
attacker can still force cache contention because memory
addresses of different programs can share a cache set.
PRIME+PROBE exploits such feature, and it also takes three
steps. First, the attacker collects a set of cache lines that can fill
a cache set and access the related memory addresses. Next, the
attacker waits for the victim to evict the cache lines. Finally,
the attacker measures the access latency.

Though PRIME+PROBE initially targets L1 cache [31],
LLC that is inclusive has also been attacked [25], [4]. A
number of variations have been developed [26]. For in-
stance, PRIME+ABORT [2] measures the Intel TSX (Trans-
actional Synchronization Extensions) abort rather than access
latency. Instead of letting the victim evict the cache lines,
EVICT+TIME lets the attacker evict a cache set, and then
invokes the victim operation [32], [33].
Indirect Attacks. Recently, researchers started to investigate
the interplay between other CPU units and cache, to make
the attack more evasive. For instance, XLATE [3] and TL-
BLEED [34] exploited MMU (Memory Management Units)
and TLB (Translation Lookaside Buffers) to leak victim’s
cache activity. The recent Intel Xeon SP started to use non-
inclusive LLC, which raised the bar for LLC cache attacks.
Yet, Yan et al. [22] showed that by targeting cache directories
(or Snoop Filter), the units tracking which core contains a
copy of a cache line, attacking non-inclusive LLC is feasible.

One major assumption of the prior attacks is that the at-
tacker’s code is on the same machine as the victim’s. Recently,
attacks over network connections were studied. By exploiting
RDMA (Remote Direct Memory Access) and DDIO (Data
Direct I/O), a remote attacker can access LLC [35] of CPU
and cache inside NIC [36], launching side-channel attacks.

On an orthogonal direction, transient execution attacks [37]
like SPECTRE [38], MELTDOWN [39] and FORESHADOW [40]
modulate the state of the cache to construct covert chan-
nels, and exfiltrate information from speculatively executed
instructions. MESHUP focuses on side channels and we will
investigate whether MESHUP can be leveraged by transient
execution attacks in the future.

C. Stateless Channels

According to Ge et al. [5], microarchitectural side-channels
exploit the competition of hardware resources, which can
be classified into two categories: microarchitectural state
and stateless interconnects. The first category includes
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caches, TLBs [34], branch predictors [41], and DRAM row
buffers [42], on which resource contention leads to the state
changes observable to the adversary. The second category
includes I/O buses [43], [44], [45], [46], execution ports [47],
[48], [49], cache-bank [50], memory bus lock [51], CPU
interconnect [52], etc. Yet, we found the security implications
of CPU interconnect contention have not been thoroughly
investigated, even though it has some very attractive properties,
like residing in all contemporary CPUs and requiring no
special features to be used by victim applications. These
properties do not always hold in other stateless channels:
e.g., VAX security kernel has led to I/O bus contention but
it is outdated [43], [44], and ports contention rely on Intel
SMT [47], [48], [49]. Though Wang et al. used a simulator
to study the timing side-channel of on-chip network [52], the
attack has not been demonstrated on real CPUs. In this work,
we investigate this under-studied channel.
Comparison to LoR (“Lord of Rings”) [8]. LoR was
proposed to build side-channel over CPU ring interconnect,
which is equipped by consumer CPUs and old server CPUs.
Different from LoR, our attack MESHUP focuses on mesh
interconnects that is equipped by current server-grade CPUs.
There are also conceptual differences between LoR and
MESHUP. First, consumer-grade CPUs come with inclusive
cache, but server-grade CPUs use distributed and non-inclusive
cache, in which case the path is unknown to attackers. Second,
in addition to the eviction-based probe, MESHUP has a new
coherence-based probe that enables cross-CPU attack.

III. ATTACK OVERVIEW

In this section, we first introduce the threat model and
compare it with prior works. Then, we overview our attack
MESHUP.

A. Threat Model

We assume the attacker who intends to extract secret (e.g.,
encryption keys) shares the same CPU with the victim but
resides in different cores. We envision MESHUP is effective in
the cloud environment, when co-residency on CPU or machine
can be achieved [54]. We also assume the existing hardware
and software defenses against the cache side-channel attacks
are deployed and turned on, like page coloring [55], [56]
and CATalyst [7]. We target Intel Xeon SP, where core-to-
core communication goes through mesh interconnects or UPI
connections. We assume that the victim application is non-
trivial, which generates observable mesh traffic, either through
a large secret working set to cause private cache eviction, or
frequent memory access. Our evaluation in Section VII shows
this feature is common in off-the-shelf applications.

Here we compare our setting to the existing cache attacks.
The strongest assumption made by the prior works is the
sharing of memory addresses (shown in Figure 2 left), like
FLUSH+RELOAD. However, memory sharing can be turned
off for the critical data/code. A weaker assumption is that
cache sets are shared (shown in Figure 2 right), so the attacker
can evict cache lines of the victim (or vice versa), like

L1, L2

Core1

L1, L2

Core2

LLC Slice LLC Slice

Mesh
Core co-locate:

LLC co-locate:

Mesh co-locate:
line

Memory Share 

Assumption Co-location Assumption

Fig. 2: Comparison of the settings between different cache
side-channel attacks.

PRIME+PROBE. Under this assumption, the attacker either
shares in-core private L1/L2 cache with the victim [31], out-
of-core LLC (either inclusive LLC [25], or non-inclusive
LLC [22]). However, the assumption does not always hold
when software defenses like page coloring or hardware de-
fenses like CATalyst are deployed to enforce spatial isolation.
Recently, temporal isolation has been proposed to mitigate
all existing cache side-channels. Appendix B describes these
defenses in detail and Table I summarizes the representative
attacks and how they are impacted under the existing defenses.
Stateless Cache Side-channel Attack on Mesh. Since the
data movement on the mesh keeps occurring for all sorts
of program activities, if the attacker’s and victim’s programs
happen to share a mesh route, the victim’s activities might
be inferred, which potentially include cache accesses. In this
process, the attacker could just access his/her own resources.
Based on this insight, we develop MESHUP to exploit the
contention on the mesh.

MESHUP is expected to bypass page coloring, hardware
isolation and temporal isolation: it does not cause cache
conflicts between victim and attacker, so page coloring and
hardware isolation like CAT and TSX can be evaded. Though
the time protection of [5] is very effective against the existing
stateful cache side-channel attacks, the authors admit that they
are “powerless” against stateless channels, since there is no
“appropriate hardware support” to partition interconnects.

B. Attack Steps

MESHUP consists of two phases to tackle the challenges
(summarized in Section I) of creating a reliable side-channel.
Phase 1: Probe & Measurement (Section V). When launch-
ing attacks, the attacker runs an application sharing CPU with
the victim. The attacker randomly selects a mesh path and then
tries to trigger traffic along the path. To direct mesh packets
over the selected path, the attacker either 1) constructs an
eviction set and probes the memory addresses related to it, or
2) causes cache line synchronization across CPUs. The probe
is issued repeatedly and the delays are logged.
Phase 2: Secret Inference (Section VII). After the prior step,
the attacker obtains the delay trace, and the secret underlying
the trace is to be decoded. This step is application-specific,
as different victim programs produce different patterns. This
step can be done at the attacker’s own machine. We use RSA
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Co-location
Assumption

Attack
Channel

Page
Coloring

Hardware
Isolation

Temporal
Isolation Key Feature

Flush+Reload [1] Memory LLC X CAT X Exploit shared memory
Prime+Probe [25], [4] Cache LLC X CAT X No need to share memory

TLBleed[34] Core TLB - Disable HT X Attack TLB not cache
Attack Directories,

not caches [22] Cache Directory X SecDir [53] X Work on non-inclusive cache

Prime+Abort[2] Cache TSX Status X CAT X Does not rely on timing instruction
Xlate[3] Cache MMU - - X Lure MMU to access cache
LoR[8] Ring Ring - - - Stateless, consumer-grade CPUs

MESHUP Mesh Mesh - - - Stateless, server-grade CPUs, cross cores and CPUs

TABLE I: Cache side-channels under defenses. “X” means the attack can be defended. “-” means the defense is ineffective.

encryption and app fingerprinting to showcase how to decode
a delay trace.

IV. CHARACTERIZATION OF MESH TRAFFIC

Before introducing the mechanisms of MESHUP, we catego-
rize mesh traffic generated during the lifetime of a cache line,
and show the characteristics of each type, which motivates the
design of MESHUP.

A. Cache Access

  L2 miss

  LLC miss

  Cache line sent to 

the requesting core

  L2  eviction  LLC hit

IMC

L2 Core

CHA

LLC 

slice

L2 Core

CHA

LLC 

slice

Fig. 3: The process of cache access.

Here we describe the process of cache access, focusing on
the non-inclusive LLC adopted by Xeon SP (also illustrated in
Figure 3). When a core accesses a fresh memory address (the
core is called requesting core), both L1 and L2 cache would
miss. The memory sub-system of the requesting core computes
a CHA ID (target CHA) from the memory address with a
proprietary hash algorithm, to know which CHA (target CHA)
is responsible for the address. Then a read transaction is sent
to the target CHA (Step 1©), which replies to the requesting
core and updates the directory accordingly. Since the line is not
cached in the LLC nor another core, the CHA cannot complete
the request by itself, and it will ask the IMC to fetch the line
from memory (Step 2©), and IMC will send the line directly to
the requesting core (Step 3©). The cache line will be inserted
into the L2 of the requesting core, but the LLC will be kept
untouched, because it is non-inclusive. When the requesting
core runs out of the L2 cache, it will follow a pseudo-LRU

policy [22] to evict a line from L2 to LLC (or drop directly,
depending on eviction policy) (Step 4©). Evicted lines will be
accessed from LLC the next time (Step 5©).

To be noticed is that all the five steps leverage mesh (plus
UPI when crossing CPUs) to deliver transaction messages as
well as the cache lines. This is critical to our attack as it
exploits the statistics of the transactions.

B. Mesh Traffic Categorization

Below we introduce the types of mesh traffic (termed T1-
T7) related to cache access, summarized from the existing
documents [57]. We use r and t to refer to the entity issuing
the request and the target. Hence, the requesting core is termed
Corer, and the co-located L2, LLC slice and CHA are termed
L2r, LLCr and CHAr . For the target, the terms are Coret,
L2t, LLCt and CHAt .
• T1: Corer to LLCt. When Corer encounters L2 cache

miss, it will send messages to CHAt co-located with
LLCt, asking if the cache line is presented. Also, L2r
may evict a line to LLC ′t when the L2 cache set to be
inserted is full. The memory sub-system of the core will
pass the line from L2r to LLC ′t .

• T2: LLCt to Corer. Following T1, if the cache line is
in LLCt, LLCt will send the cache line to Corer.

• T3: IMC to Corer. Alternatively, if the cache line is not
present in LLCt, CHAt will ask the IMC to fetch the
line from memory and send it to Corer. To be noticed
is that the line is directly sent to Corer, when LLC is
non-inclusive.

• T4: LLCt to IMC. When LLCt is full, to accept new
cache line insertion, it will evict the least recently used
cache line to the IMC.

• T5: between Corer and Coret. Corer can access a
cache line in the private cache of Coret when they share
memory. L2t will pass the cache line to Corer through
mesh, once Corer is going to write the line.

• T6: LLCt to I/O Unit. Intel CPUs allow I/O devices
to directly access LLC and bypass memory for better
performance, under DDIO [14]. In this case, cache lines
will be passed between a PCIe stop (stop inside a PCIe
tile) and LLCt.

• T7: Other traffic. It characterizes the mesh traffic un-
documented by Intel, which is expected to have a smaller
volume than T1-T6.
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In Section VI-F, we summarize our insights about different
traffic types.

V. THE PROBE DESIGN

Below we describe two probes under MESHUP, which
selects a path on the interconnect, hoping to contend with
the victim’s mesh traffic and triggers mesh transactions.

A. Probe based on Cache Eviction

Different from routing a packet on the Internet, in mesh
interconnect, a program cannot explicitly sends traffic to the
destination, because cache transactions are triggered implicitly.
To address this challenge, we adapt the existing methods for
constructing evictions sets [4], [22]. An eviction set is a large
set of memory addresses that are mapped to the same cache
set, so accessing the whole set will result in cache-set overflow
and cache eviction. Previous attacks, e.g., PRIME+PROBE, use
an eviction set to evict lines of the private caches in the victim
core. Though MESHUP uses eviction set, our goal is not to
evict victim addresses. To the contrary, MESHUP evicts lines
of its own private L2 cache, in order to generate mesh traffic
flowing to a designated LLC slice, which is distinguished by
the mesh tile. As such, MESHUP stays out of the protection
realm of any existing defense. In Figure 4, we illustrate the
concept of our probe.

          Mesh LinkVictim

Core

Attack

Core

            Victim Traffic

LLC Slice

Probe Traffic

Fig. 4: The probe designed by the attacker.

Noticeably, we assume the attack can be executed on a cloud
VM, where the attacker cannot pin the process to his/her
desired core or learn which core is occupied by the victim
application. In other words, the attacker cannot select the
optimal path for contention. Still, our evaluation shows the
chances of contention are high on a random path.
Constructing Eviction Set. First, the attacker prepares a set
of memory addresses (denoted as EV ) that are mapped to one
L2 cache set. The number of addresses (denoted as n) in EV
is set to be larger than the number of ways (denoted as w) an
L2 set has, therefore when requesting addresses of EV , L2
cache misses always happen after w requests. From w + 1 to
n requests, each time a line is evicted from L2 to LLC, a new
line from memory will be inserted to L2. After that, when
requesting EV again, n lines will be evicted from L2 to LLC,
and n lines will be passed from LLC to L2 in return, resulting
in stable bi-directional mesh traffic on the attack path.

To get traffic on the fixed mesh route, MESHUP needs
to force all L2 misses to be served by one LLC slice.
Thus, EV is not only mapped to a set of L2, but also
a set of LLC slices. To find addresses for such EV , we
use the two routines proposed by [22], check_conflict

and find_EV, which are designed for non-inclusive LLC.
In essence, check_conflict tries to test if removing an
address of a set makes cache conflict disappear. find_EV
tries to utilize check_conflict to filter out a set of
addresses that are all mapped to the same LLC slice. In
Appendix C, we describe them in detail. We split the EV
into EV0 and EV1 of equal size, and the addresses on the two
sets have different 16th bit (0 and 1). As shown in Figure 9
of Appendix A, bits 15:6 of a memory address point to an L2
set, while bits 16:6 point to an LLC slice set. As such, EV
is associated with a single L2 cache set, and EV0, EV1 are
mapped to two different sets of the same LLC slice.

Even when all cache lines fall into one LLC set, the attacker
cannot decide which LLC slice serves the Corer yet. To
identify the LLC slice, Yan et al. suggest testing an EV
(multiple EV have been constructed as candidates) to see if
it co-locates with Corer [22]. We adopt the same approach
and let the attacker enumerate every core on his/her own CPU,
and measure its access time to an EV . When the serving LLC
slice is local to the core, the access latency is the lowest, and
we link EV to the LLC slice ID.

Finally, the size of EV (n) has to be tuned carefully by
the attacker. Not only n should be larger than w to force L2
misses, but it should also avoid being too large to overflow
LLC and L2 together. Otherwise, a line will be evicted from
LLC to memory (T4 traffic), a request that takes a long time
to respond, reducing the probing frequency. As the Xeon SP
uses 11-way LLC set and 16-way L2 set [9], we varied n of
EV from 18 to 38 (2*11+16), and found when n equals to
24 (EV0 and EV1 each has 12 addresses), the mesh traffic
generated within an interval is the highest.

For the attack prototype, we exploit a CPU feature called
huge page [58], which allows pages of more than 4KB to
be accessed, to make the attacker’s measurement more stable.
However, this assumption is not necessary during the real-
world attack as Vila et al. has a solution for EV construction
with normal pages [59].

Delay Measurement. When the victim application is running,
the attacker sequentially visits every address within EV im-
mediately after receiving the response to the prior request,
and records the timestamp of each request (e.g., using the
instruction RDTSCP to read the CPU counter). The interval
between consecutive requests reflects the cache transaction
latency. When the interval is increased, the victim is supposed
to have cache transactions concurrently. To cope with random
noises, the attacker repeatedly visits the EV for x times (we
set x to 20 during the experiment) to obtain a sample for
an interval, and analyzes the interval trace to infer the access
patterns of the victim applications.

The Pseudo-code. Here we summarize the probe in Algo-
rithm 1. The process of EV generation is adapted from [22],
by setting the size of the set of candidate EV (EV s) three
times as the number of LLC slices, in order to increase
the chance of getting an EV for a designated LLC slice.
This size can be adjusted based on the running environment.
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Algorithm 1: The pseudo-code of eviction-based probe
Result: IntervalSeq
path = rand path();
L2 set index = rand(0x3ff);
for i in 3* (num of LLC slices) do

EV s.append(get EV( L2 set index));
end
// select an EV
set affinity(path.dst);
for each EV in EV s do

access(first addr of EV );
if access time ≤ TH then

break;
end

end
// start attack
set affinity(path.src);
while True do

for i in range(20) do
access(EV );

end
IntervalSeq.append(access time);

end

The get_EV() function employs check_conflict and
find_EV to find an EV for an LLC slice. The attacker
uses set_affinity() to place its program to a random
core (source) and repeatedly test if an EV is in the desired
LLC (destination). Noticeably, calling set_affinity()
from VM will not pin the program to a desired core. We
use this routine to make the core ID constant. Sometimes,
core remapping could move the applications to different cores
during execution, and we discuss its impact in Section VII-B
(“Core Remapping”).

B. Probe based on Cache Coherence

The eviction-based probe can generate sufficient and steady
mesh traffic on a single CPU, but cannot produce enough
cross-socket traffic that is needed for the cross-CPU attack.
When we test the eviction-based probe on a server with two
CPUs and let a core evict lines to an LLC slice in the remote
socket, we found the CPU core does not always evict the
desired cache lines. Instead, the core may just drop the lines
if they are clean. In this case, accessing the eviction set only
triggers T2 traffic, so some accesses related to victim memory
may not be captured by the probe.

By inspecting the different types of traffic, we found if an
attacker intentionally triggers communications through UPI,
cross-core T5 traffic can be captured, so we design the probe
accordingly. When two different cores keep writing to the
same cache line, the CHA will be busy maintaining the cache
coherence (under MESIF described in Section II-A), and the
interconnects would be filled with T5 messages synchronizing

the line. The completion time of such cache accesses can be
influenced by the victim’s traffic.

We design a cross-CPU probe based on this insight. The
attacker first occupies a core and constructs a set of cache
lines that are all mapped to an LLC slice of the core. Then
he/she starts a thread in the core (core A) to keep sequentially
writing the lines with random values. At the same time, the
attacker starts a thread in the remote socket (core B) to also
sequentially write the lines within the set, and records the time
spent on accessing the set. In this way, every cache line to be
accessed by core B is expected as Invalid, because core A
should have written the line, during which core B turned the
line to the invalid state and core A reaches the exclusive state.
As a result, writing the invalid line causes messages sent to
the CHA in core A, and core A will send the line to core
B, resulting in bi-directional UPI traffic. Both cores of the
attacker can record the timestamps to infer the victim access
pattern. Algorithm 2 shows the pseudo-code of this probe. A
prominent advantage of this probe is that the contention to
the victim traffic through the UPI path is deterministic, so all
the measured delay traces can be used for inference, without
worrying about path co-location.

Algorithm 2: The pseudo-code of coherence-based
probe

Result: IntervalSeq
path = rand cross CPU path();
set affinity(path.dst);
for i in 3* (num of LLC slices) do

AS = rand slice addr set();
access(first addr of AS);
if access time ≤ TH then

break;
end

end
if clone() == parent then

while True do
access(AS);

end
else

set affinity(path.src);
while True do

access(AS);
IntervalSeq.append(access time);

end
end

According to our exploratory experiment, 4 pairs of probes
can saturate the two UPI links by 93%. In this case, extra
cross-socket traffic made by the victim can cause congestion
and enlarge the attacker’s probe delays.

Our probe differs from the previous cross-CPU channels.
DRAMA exploits the contention on memory shared across
CPUs rather than cache [42]. Irazoqui et al. exploits the
directory protocol of CPU interconnects [60], and attacks
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QuickPath Interconnect (QPI) [61] on Intel CPU. Our probe
attacks UPI, which succeeds QPI in Intel SP. We also believe
our probe has the potential to be generalized to other CPU
interconnect, like ring on old CPUs which use QPI, but the
channel quality might be downgraded.

VI. ANALYSIS OF THE MESHUP SIDE-CHANNEL

In this section, we provide quantitative analysis on the
probes described in the prior section. We first describe an
approach to reverse engineer CPU layout and leverage it
to examine the variance of delays caused by the contention
between the victim and attacker applications. Then, we inspect
the spatial and temporal distribution of the mesh traffic. We
also identify the reasons for the delay increase resulting from
mesh congestion, according to CPUs’ performance counters.
A simple mitigation based on LLC slice isolation is tested
against MESHUP probe. Finally, we summarize our insights
into the MESHUP side-channel.

A. CPU Layout Reverse Engineering

For the quantitative analysis, we aim to enumerate various
combinations of attacker’s and victim’s mesh traffic. The CPU
layout needs to be reverse engineered, so that we can pin a
program to the desired core and direct it to talk to another.
To notice, this step requires root privilege to execute some
profiling instructions, but during the actual attack described,
this step is not taken.

We have reverse engineered Intel Xeon Scalable 8260 and
8175. Due to the space limit, we describe the layout of 8175
in Appendix D.
Identifying the Enabled Tiles. There are three types of CPU
dies, named LCC, HCC, XCC (for low, high, and extreme
core counts), for Intel Xeon family, with 10, 18, or 28 cores
in a die respectively [62]. However, when a CPU is shipped
to the customers, Intel might intentionally disable some cores.
For example, the Xeon Scalable 8260 has 24 active cores,
because Intel disabled 4 cores.

Here, we exploit the hardware features of Intel CPUs to
reveal such information. According to Intel’s document [63],
a user can query the CAPID6 register to learn the ID of the
tile whose CHA is disabled. When CHA is disabled, the whole
tile including the core and LLC inside are also disabled. Take
Xeon Scalable 8260 as an example. Its CAPID6 contains 28
bits to indicate the status of all tiles, and a CHA is disabled
if its associated bit is 0. By reading all bits of CAPID6, we
found bit 2, 3, 21 and 27 are set to 0. A previous research [64]
suggests tiles are numbered from north to south on each
column and the west column is the smallest, so we number all
the tiles and mark the disabled tiles based on the CAPID6 bits.
Table II shows the tile IDs and the disabled ones (in gray).
Mapping CHAs and Cores to Tiles. Next, we try to infer the
relation between the core/CHA IDs and the tile IDs. According
to [64], CHAs are sequentially numbered along with the tiles,
but when a tile is disabled, the CHA ID is skipped. As such,
CHA is numbered from 0-23 for Xeon Scalable 8260, and tile
#4 has CHA #2 because tile #2 and #3 are disabled.

UPI PCIE PCIE RLINK UPI2 PCIE
0 4 9 14 19 24

IMC0 5 10 15 20 IMC1
1 6 11 16 21 25
2 7 12 17 22 26
3 8 13 18 23 27

TABLE II: Layout of Xeon Scalable 8260 CPU. Gray cell
indicates the tile is disabled.

UPI PCIE PCIE RLINK UPI2 PCIE
0, 0 2, 16 7, 19 12, 3 17, 16 21, 17

IMC0 3, 18 8, 2 13, 15 18, 10 IMC1
1,12 4, 1 9, 14 14, 9 22, 11

5, 13 10, 8 15, 21 19, 22 23, 23
6, 7 11, 20 16, 4 20, 5

TABLE III: The IDs of CHAs and cores of Xeon Scalable
8260 CPU.

Regarding cores, the task becomes non-trivial, as they are
not sequentially numbered. McCalpin proposed a method to
infer how the cores are aligned by reading “mesh traffic
counters” [64]. However, the author also admitted the result
needs to be disambiguated [65]. To improve the accuracy of
the inferred layout, we propose a new method. Specifically, we
bind a thread to a core (by setting its affinity [66] to the core
ID), and use it to access 2GB memory. We monitor the per-
formance counter LCORE_PMA GV (Core Power Management
Agent Global system state Value) of Intel PMU [63] and found
the CHA yields the highest value when it co-locates with the
core in the same tile. We assign the core ID to the tile with
CHA with the highest LCORE_PMA GV reading. We repeat
the process for every core, and the layout can be reconstructed.
In Table III, we show the inferred CHA and core IDs for Xeon
Scalable 8260.

B. Temporal Resolution

The key assumptions of MESHUP are that 1) the probe delay
increases when the mesh links are congested; 2) the granularity
of memory access is sufficient to introduce noticeable mesh
traffic. Here we try to validate these assumptions. We first
inspect the delay traces resulting from on-off style memory
access. If the access pattern can indeed be recognized, the
delay sequence should resemble a square wave, where a rise
is related to contention.

Leveraging the result of Section VI-A, we fix a sender
process at CHA 0 and force the process to access the memory
mapped to LLC slice at CHA 21, which generates mesh traffic
along the top horizontal row. The sender process accesses
memory for 15us and then rests for 15us periodically (i.e.,
Duration T = 30us), simulating on-off access. We place 3
eviction-based probes as a receiver at the top horizontal path
of the mesh structure, i.e., from CHA 2 to 17, from 17 to 2,
and from 7 to 12.
Results. We gradually decrease T (from 30 to 5 and 2) and
Figure 5 shows the observed interval traces. As we can see,
the traffic made by the sender indeed causes delay increase
by up to 50%, and it disappears every time the sender stops
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Fig. 5: Delay traces collected by the receiver of different T .
The x-axis is the running period of the sender.

accessing the memory. When T is larger than 5us, clear peaks
can be observed on the delay trace. However, when T drops
to 2us, we are unable to identify those peaks. As such, the
access pattern is leaked to mesh links, and memory access
lasting longer than 2.5us(T/2) can be recognized from the
delay trace.

On the Intel SP platform, the probe can infer victim activity
at the granularity of around 17 memory accesses. One DRAM
access takes around 150ns (370 cycles) as reported in [22].
When T is 5us, the access is sustained for only 2.5us as the
victim accesses memory in on-off style. Therefore, the gran-
ularity is 17 (i.e., 2500/150). Though the resolution is lower
than fine-grained probes, like 25ns for PRIME+SCOPE [67],
we found it is sufficient to leak secret like encryption key.

0 150 μs
10k

40k

In
te
rv
al
 μC

yc
le
s)

Fig. 6: Delay trace collected by coherence-based probe.

Cross-CPU delays. We also tried to use the coherence-based
probe to evaluate the cross-CPU traffic. The sender process
accesses the memory of another socket in the on-off style,
and a pair of coherence-based probes are placed at each CPU
to collect delay traces. When T is 35us, the congestion can be
clearly sensed by the probe. Figure 6 shows the delay trace.
Though the temporal resolution is worse than the eviction-
based probe, the delay variance resulting from UPI congestion
can be over 4 times (from 10K cycles to 40K cycles). The
variance of the eviction-based probe is around 50%.
Signal to Noise Ratio (SNR). To quantify the quality of the
collected traces, we calculate the SNR of each trace. To this

end, we first convert a trace from the time domain into the
frequency domain with Fast Fourier Transform (FFT). We
denote the magnitude value at the square wave frequency
(i.e., 1

T ) as signal strength and the average magnitude at other
frequencies as noise strength. SNR is their ratio. Figure 10 in
Appendix E shows traces of different SNR values under the
eviction-based probe. As we can see, for the trace of SNR
larger than 10, each bit can be clearly recognized. For the
trace with SNR 10, some bits cannot be decoded. When SNR
is less than 10, the bits can hardly be decoded.

C. Distribution of Mesh Traffic

The prior evaluation proves the variance of probe delay is
related to the program’s activities. In this subsection, we try to
quantify the distribution of mesh traffic and assess the spatial
resolution of the channel.
Distribution by Traffic Types. We place a victim application
described in Section VI-B at each tile and access every LLC
slice to generate mesh traffic. Then, we select a route that is
related to every traffic type (i.e., T1-T7) and place eviction-
based probes to collect delays. Table IV left (“w/o LLC slice
isolation”) shows the result.

It turns out, on the paths from the victim core to the victim
LLC slice (i.e., T1 and T2), the delay traces are highly related
to the memory access (the average SNRs are all larger than
10). Besides, the probes closer to LLC (i.e., X route for T1
and Y for T2) yield better SNR (the average SNRs are larger
than 30 and the ratio of SNR >10 traces is more than 0.6).
This result shows which LLC is accessed by an application
can be discerned, suggesting the MESHUP side-channel has
LLC-slice level spatial resolution.

On routes not directly related to core-to-LLC communi-
cation, like the route from IMC (T3), the collected delay
traces still have non-negligible SNR. Moreover, we found
there are delays related to T7, i.e., unknown mesh traffic.
One explanation for the existence of these seemingly irrelevant
mesh traffic is that CPU might broadcast messages under
certain events, e.g., credit exhaust messages to notify that
congestion is happening.
Distribution by Geometry. Though we assume the attacker
cannot select a path at his/her will, contending to victim’s
mesh traffic by running the application on any tile is feasible,
as the mesh traffic should be distributed across the mesh
network, hitting different tiles. We validate this assumption
through an emulation. We run a victim process to access a
chunk of consecutive memory in on-off style, and we pin the
process to CHA 9. Then we run the attacker process to probe
all mesh paths: we enumerate the tiles other than CHA 9, pin
the attacker process to the core, and then probe from the core
towards all LLC slices.

We compute the max and median SNR over all paths for
each assigned attacker core. Table V shows our results. CHA
14 yields the best SNR. For most of the other tiles, the SNR
values are sufficient for recovering the access pattern (i.e.,
SNR over 10), suggesting MESHUP is effective even when a
random core is occupied.

9



Probe Route
w/o LLC slice isolation w/ LLC slice isolation

T1 T2 T3 T4 Others Others T3 T4
Y X Y X Y X Y X Y X Y X Y X Y X

Avg. SNR 12.74 38.97 32.74 14.51 4.73 9.34 5.46 8.12 5.36 7.40 3.46 3.36 6.19 4.60 6.53 6.95
Ratio (SNR >10) 0.20 0.72 0.64 0.36 0.05 0.28 0.07 0.21 0.07 0.12 0.00 0.00 0.08 0.04 0.08 0.13

TABLE IV: The SNR of delay traces probed at different links grouped by traffic types. Y and X are the traffic encountered
at the Y-route and X-route. The last row shows the ratio of the delay sequences whose SNR are larger than 10.

UPI PCIE PCIE RLINK UPI2 PCIE
0

27.79
9.74

2
21.03
10.30

7
30.34
11.74

12
23.42
11.92

17
15.74
10.24

21
18.61
10.67

IMC0
3

21.82
11.63

8
19.28
11.30

13
17.17
9.60

18
10.89
7.31

IMC1

1
15.60
9.52

4
16.92
11.77

9
Victim

14
49.75
26.25

22
23.18
10.37

5
17.32
12.17

10
15.42
7.32

15
23.28
13.21

19
19.89
12.43

23
16.40
8.39

6
16.47
11.46

11
24.25
11.77

16
21.57
9.65

20
19.35
10.58

TABLE V: The measured SNR when the attack is pinned
to each core. Numbers in every tile represents the CHA ID,
maximum and median SNR values respectively.

Events w/o victim w/ victim

HORZ RING AD IN USE 1004151 822149631
HORZ RING AK IN USE 1952646432 2530753880
HORZ RING BL IN USE 3914059524 4665246823
HORZ RING IV IN USE 35639 102218
TxR HORZ OCCUPANCY 4414430426 5346595687

AG1 BL CRD OCCUPANCY 60996 482979
RxR OCCUPANCY 4690 141706754

STALL NO TxR HORZ
CRD BL AG1 350 5005

RxR BUSY STARVED 9227 41261801
RxR CRD STARVED 2041 65177026

TxR HORZ STARVED 0 6942

TxR HORZ NACK 38951 188482
TxR VERT NACK 2 19405478

VNA CREDIT RETURN
OCCUPANCY 1301612583 2668519186

M3 CRD RETURN BLOCKED 1363707 60557495

TABLE VI: PMU events that are changed most rapidly.

D. Causes of Delay Increase

To obtain an in-depth understanding of the mesh delays, we
leverage Intel PMU [63] to record the events related to mesh
stops, and use the event counters to identify the root cause.
The experiment settings follow Section VI-B.
PMU Event Comparison. We launch and stop the victim ap-
plication and record the PMU events separately. Table VI lists
the PMU events that are changed most among all the events.
These events mainly fall into three categories: resources in
use, resource starvation, and NACKs. The increase of the
first category counters indicates that the related components

inside the mesh stop become busier, as the growth of these
counters means more time or buffer resources are spent. For
example, the increase of HORZ_RING_XX_IN_USE indicates
that the mesh stops spent more cycles in forwarding packets
to horizontal direction; the increase of events that ends with
_OCCUPANCY suggests more buffers or credits have been
occupied.

The second category indicates that the forwarding com-
ponents get stalled more frequently, because the re-
lated resources are used up, which back-pressures the
prior sending components. For example, the increase of
STALL_NO_TxR_HORZ_CRD_BL_AG1 means that more
Egress buffer of BL ring [63] of agent 1 is stalled because of
waiting for credits. In this case, it stops forwarding packets,
which will increase the delay of the transactions held in the
components.

The third type indicates that the number of packets gets lost
due to congestion. For example, TxR_HORZ_NACK counts
how many Egress packets have not got responded to the
horizontal ring, and NACKs were received. Packet loss would
sharply increase the network delay and cost considerable time
to recover under re-transmission.

Based on the observation, we conjecture that when the two
mesh flows (i.e., attack and victim) go through a mesh stop,
components inside mesh stops become busier, or even stalled
because of the shortage of credits and buffer, resulting in
packet losses and delay increase.

We found the similar patterns also exist for the coherence-
based probe. In particular, the VNA credits and M3UPI
(the interface between mesh and UPI) credits have seen a
significant increase (see the last two rows of Table VI).

E. LLC Slice Isolation

MESHUP mainly targets the cross-tile traffic related to
LLC. Intel CAT allocates different cache ways to different
applications to implement cache isolation, but it does not
partition the cross-tile LLC accesses. If cache partition can be
done at the level of LLC slice, e.g., placing the data frequently
accessed by an application to the LLC slice local to its
occupied cores, MESHUP might be deterred. Farshin et al. [21]
designed a slice-aware memory management mechanism and
showed it can realize cache partition. Here, we evaluate this
idea under the attack of MESHUP.

In particular, we create a victim application that only
accesses its local LLC in on-off style, and let the eviction-
based probe collect delay sequences on other routes. The
code of real-world applications can be changed to implement
this idea: e.g., reading LCORE_PMA GV when accessing the
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memory and conducting sensitive operations only when the
memory is mapped to the application’s local LLC slices. In
this case, the mesh traffic from the victim is minimized, so the
contention with the attacker’s probes is unlikely to happen.

Table IV right shows the SNR by traffic types when this
defense is deployed. Though no more T1-T2 traffic, T3-T4
traffic still carries meaningful information (e.g., the SNR of
13% X-route T4 traffic is larger than 10). The reason is that
the victim core cannot terminate the communication with IMC,
which exposes the access patterns to memory. As a result, we
conclude LLC slice isolation does not mitigate MESHUP.

F. Insights into Mesh Traffic

Limited forwarding capability causes congestion on mesh
stops. A CPU core can execute more than one load/store
instruction per cycle, as there are multiple ports coming
with load store unit, indicating that the memory sub-system
potentially can issue more than one cache line (64 bytes) per
cycle. However, according to [68], each mesh link has only
32-byte wide bi-directional physical data bus (i.e., BL ring),
which can be easily saturated by one core. What’s worse, a
mesh stop serves requests from cores coming from all four
directions, so a mesh link can be severely congested when
there is more incoming traffic than outgoing traffic.
Congestion causes extra delays. Like routers in computer
networks, mesh stops queue the packets to be processed in the
buffer. But unlike routers that drop packets as they will, Intel
adopts credit-based flow control for mesh [63], which is more
reliable. When a mesh stop is unable to process more incoming
packets, it back-pressures the senders by cutting down their
credits. In this case, the packets will be queued in the sender,
and suffer from extra delays. In Section VI-D, we show that
MESHUP can indeed cause extra cycles, credit exhaust, and
even packet NACK in mesh stops, which results in up to 50%
delay increase for mesh.

Send to Mesh Receive from Mesh

4

Fig. 7: Mesh traffic to and from a core. The number inside the
arrow shows the number of tiles that may receive/send traffic,
which is derived according to the policy of YX routing and
the hash function that decides the home of an address.

Uneven traffic distribution. Mesh traffic is unevenly dis-
tributed across the mesh network. To maximize the overall
throughput of LLC and avoid the bottleneck in LLC slices,
Intel uses the hash algorithm such that each LLC slice serves
an address with equal chances. As a consequence, the traffic
may be more congested at some links near the victim core,

as they serve more LLC slices. For example, for a victim at
the southwest core, more than half of the incoming traffic may
be carried by the right-hand tile of the victim, and more than
half of the outgoing traffic will go through the north tile, which
is illustrated in Figure 7. This aligns with our observation in
Table V, as the right side of the victim tile has the most tiles
and CHA 14 carries most of the traffic (T2). For T3 and T4,
tiles near IMC may carry more transit traffics. For T6, tiles
near the PCIe stop may carry more transit traffics. Cross-socket
T5 will influence tiles near UPI stops.

VII. ATTACKING REAL-WORLD APPLICATIONS

In this section, we evaluate Phase 2 (Secret Inference)
described in Section III-B. We choose JDK RSA implementa-
tions as the primary target to evaluate MESHUP within a CPU.
Besides, we choose app fingerprinting to evaluate MESHUP
across CPUs.

A. Experiment Settings

CPU Intel Xeon Scalable 8260 / 8175*2
Main board Intel C621

Memory 64GB
OS Ubuntu 18.04

JDK version 11
Chrome version 89.0.4389.82

CAT Version 1.2.0-1

TABLE VII: Hardware and software for the attack evaluation.

Table VII shows the hardware and software specification of
our experiment platform. We use 8260 to evaluate the eviction-
based probe, and two-way 8175 for the coherence-based probe.

To validate our claim that MESHUP bypasses cache parti-
tion, we turn on Intel CAT for the entire experiment duration.
This is the common setting for other side-channel attack works
like Xlate [3], but Intel CAT does not represent the strongest
defense, and we acknowledge this limitation of setting in
Section VIII. For Intel CAT, we create two COS. The core
running the victim program is bond with COS 1, while other
cores are bond with COS 2, by using the command pqos of
intel-cmt-cat package [69] (with parameter -e). COS 1
is exclusively allocated with one way of LLC while the rest
10 ways are allocated to COS 2 exclusively. Therefore, the
attacker program will not share any L1/L2/LLC cache with
the victim program.

For the attack within a CPU, we evaluate MESHUP against
RSA encryption and choose its Java implementation because
Java yields more distinguishable patterns of mesh traffic,
compared to other languages without automated memory
management, like C++. The Java Virtual Machine (JVM)
creates a new object for the same variable for each iteration
within the loop, and uses Garbage Collection (GC) to manage
the old object, which triggers frequent memory access. In
the meantime, huge integer arrays are reused across loops,
e.g., mult, and their addresses are constant, which produces
stable contention patterns. We assume a 2048-bit private key
is used. The attacker aims to infer the bit sequence of the
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private key. We tested the official JDK implementation of
RSA (javax.crypto.Cipher) as the victim. We assume
the victim is assigned to a randomly selected core for RSA
encryption, and the attacker is also assigned to a random core
for probing. This setting aligns with the cloud environment, as
both victims and attackers have no control over core selection.
The experiment was repeated 1,000 times and each run uses a
random RSA key, so each delay trace collected by the attacker
is unique.

For the cross-CPU attack, we choose application (or app)
fingerprinting to evaluate the coherence-based probes. We
assume the attacker is interested in learning what app is
running on a machine, so he/she launches MESHUP to probe
the UPI bus. The attacker employs a DNN classifier for
secret inference. Gulmezoglu et al. also launched a cross-CPU
attack for app fingerprinting (the exploited channel is directory
protocol, different from MESHUP) [70], and used 40 apps as
the test suite (see Appendix F). We use the same test suite.
The attacker runs each app 50 times and each run lasts for 5
minutes. Under each app, 38 traces are used for training and
the remaining 12 are for testing.

B. Attacking Sliding Window RSA

Sliding Window is a popular implementation of RSA (e.g.,
GnuPG has adopted Sliding Window after version 1.4.13).
Compared to the older Fast Modular Exponentiation, it has
better efficiency and partially fixes the side-channel vulner-
abilities. In particular, Sliding Window decouples key bit
stream from mul/sqr execution sequence, so learning the
occurrences of mul/sqr with timing side-channel does not
let the attacker directly learn the key bits. However, a recent
work [12] showed that mul/sqr execution sequence can still
be utilized to crack Sliding Window RSA. Given a mul/sqr
sequence, their algorithm (Sliding right into disaster, or SRID
for short) is able to either output the 100% correct inference
for a key bit (i.e., either 0 or 1), or output X, meaning the
algorithm is unable to get a correct inference. When using
SRID to crack 2048-bit RSA key, 5-bit sliding window RSA
implementation leaks over 33% of the key bits. JDK uses 7-bit
sliding window, in which case around 30% bits are expected to
be recovered2. MESHUP can make full use of SRID to recover
key bits. The attacker needs only recover mul/sqr sequence,
then SRID is applied to output 0, 1 and x.

LoR has tested the eviction-based probe on CPU ring
against RSA Fast Modular Exponentiation, and achieved 90%
accuracy (with prefetchers on) for key bits recovery [8]. As
a comparison, we also tested MESHUP against RSA Fast
Modular Exponentiation, and the details are elaborated in
Appendix G.
Decoding the delay traces. After analyzing the collected
delay traces, we found they have discernable patterns and fall
into three categories, Pattern A/B/C, as shown in Figure 8.

2For the left-to-right algorithm, the one used by JDK, 28% bits can be
recovered for each iteration when windows size is 7 [12]. Multiple iterations
increase the number of recovered bits, which makes it possible to recover
around 30% bits, as we show later.
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Fig. 8: A delay sequence collected for Sliding Window RSA.
Black stars represent ground truth positions of mul, and red
dots represent the positions of sqr.

For Pattern A, each mul incurs an obvious rise, while for
Pattern C, each mul incurs a discernible valley. For Pattern
B, each sqr incurs a rise. Because the interval of the rises are
different, their peaks in the frequency spectrum are different.
If a sequence has peaks at around 10.5 kHz, we consider it
Pattern B, and 8 kHz for Pattern A and C. Pattern A and C
can be distinguished as A has many rises while C has valleys.

As such, our decoder is implemented as a script to find the
traces that match Pattern A/B/C and then infer the key bits
from them. It 1) clips each samples to a range; 2) smooths
the trace; 3) finds peaks (valleys) and calculate how many
muls or sqrs are between the found peaks (valleys), 4) selects
the traces matching Pattern A/B/C, 5) launches SRID on the
mul/sqr traces to infer key bits.

mul/sqr Sequence Recovery SRID
Pattern # Acc1 Perfect Acc2 Acc3

A 5 99.0% 1 31.1% 23.5%
B 17 98.8% 10 30.7% 25.2%
C 34 96.1% 3 30.8% 20.4%

All 56 97.2% 14 30.8% 22.1%

TABLE VIII: Sliding Window RSA key bits recovery results.
“#” is for the number of pattern traces. The slight differences
on ACC2 are attributed to the use of random keys.

Results. We define three evaluation metrics for this exper-
iment. For a sequences exhibit Pattern A/B/C (called pat-
tern sequence), a mul/sqr sequence (called ms sequence)
is recovered, and its Largest Common String (LCS) is de-
rived by matching the ground-truth. ACC1 is computed as∑NMS

i=1
LCSi

MSi
, where LCSi and MSi are the lengths of ith

LCS and ms sequence, and NMS is the number of all ms
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sequence. On a ms sequence, SRID is executed. Assume
the number of all key bits is K, and correctly recovered
key bits for MSi is Ci. For the perfectly recovered ms
sequences (counted NP ), we define ACC2 as

∑NP

i=1
Ci

K . For
all sequences, we define ACC3 as

∑NMS

i=1
Ci

K .
Table VIII summarizes the overall results and the results

by Pattern A/B/C. Among all these 1,000 traces, we found 5,
17, and 34 traces exhibit Pattern A, B, and C. So in total 56
sequences can be analyzed with SRID. The remaining traces
(944) do not exhibit discernible patterns because their SNR
is not sufficient. We tried to recover the ms sequences from
the 56 useful traces, and found 14 can be recovered perfectly.
Assuming the victim repeatedly runs RSA and the attacker
keeps profiling mesh traffic, it will take on average 18 rounds
to get a ms, or 71 (1,000/14) rounds to get a perfect ms
sequence. The overall ACC1 is 97.2%, suggesting mul and
sqr can be derived at high accuracy from the pattern traces.
Regarding the result on each pattern, we found the accuracy
differs. For Pattern B, the attacker has 59% chances (10 out
of 17) to obtain a perfect ms sequence. Therefore, the attacker
can focus on Pattern B when enough traces are observed.

Then, we tested the SRID algorithm on the perfect and ms
sequences. In average 30.8% key bits (ACC2) can be inferred
from the 14 perfect ms sequences. The accuracy drops to
22.1% (ACC3) when all 56 ms sequences are considered.
A recent work [71] pointed out that SRID algorithm can be
improved for better recovery ratio, and we believe more key
bits can be recovered upon it.
Background Workload. The previous experiment is con-
ducted in an environment with no prominent background
workload. Here we evaluate how normal background workload
(or noises) would impact the delay traces and inference
accuracy. To produce the background noise, we run snapd,
sshd, tmux, and a docker with Ubuntu image concurrently with
RSA encryption on the server. Besides, the server runs the
default website of Apache HTTP server, and another machine
repeatedly visits the website. The attacker launches the attack
against RSA as described in Section VII-B.

Table IX shows the results (columns with “N”), and fewer
pattern traces are observed (dropped from 56 to 40), mainly
because the noises interfere with the probe and make the delay
traces be filtered out by our script. Yet, ACC1 is similar
(97.1% vs. 97.2% in Table VIII). Hence, we expect the attack
can be successful in the noisy environment when more delay
traces are collected.

# Acc1 Perfect Acc3
Pattern N, CR N, CR N, CR N, CR

A 2, 3 96.2%, 99.5% 0, 2 21.0%, 30.1%
B 14, 11 98.5%, 99.0% 4, 5 22.8%, 26.7%
C 24, 18 96.3%, 95.1% 1, 1 20.8%, 19.7%

All 40, 32 97.1%, 96.9% 5, 8 21.5%, 23.1%

TABLE IX: Results with background workload (columns “N”)
and core-remapping (columns “CR”).

Core Remapping. In the previous evaluation, we fixed the
victim at a core when RSA encryption is executed. On cloud

platforms, neither the attacker nor the victim has control over
core allocation, as the OS or hypervisor may remap tasks to
other cores silently [72]. The core remapping process may
introduce noises, and we evaluate the impact here.

First, we try to estimate the frequency of core remapping.
We ran the attack of Section VII-B in a VM hosted by QEMU,
and observed that core remapping has happened 23 times in
10,395 seconds, meaning that core remapping happens every
7.5 minutes on average, which is far longer than a round of
RSA encryption. Therefore, most delay traces would not be
impacted. Then, we estimate how many bits can be recovered
from the traces when core remapping is happening. Initially,
we tried to force the OS to remap the victim task to another
core with taskset, but found Linux does not remap a task
under this instruction. Then, we tried to launch a large number
(e.g., 72) of dummy threads, which forces OS to schedule
tasks among cores. We found core remapping happens 52
times during the 1,000 runs of RSA, which means 52 traces
are directly polluted by core remapping while the rest are
indirectly interfered. In Table IX (columns with “CR”), we
can see that the results are similar as the case with background
workload. The number of pattern traces is 32, while ACC1 is
96.9%.

Another OS factor that can impact MESHUP is memory
swapping. During evaluation, we did not prevent memory
swapping, so noises introduced by it have been taken into
consideration.

C. App Fingerprinting

We tested the coherence-based probe for app fingerprinting,
with the 40 apps in Phoronix Test Suite used by [70]. Our
testbed has two CPUs, so we let the attacker’s code runs on
two different CPUs and a random core is occupied in each
CPU. The victim’s app runs on a random core on one of the
two CPUs. When collecting delay traces, the attacker probes
the UPI bus in a 10ms interval, so 30,000 samples can be
collected for each app run (i.e., 5 min). In the pre-processing
phase, we remove the abnormal samples (or noises) that are
out of the normal range (30000, 600000) and smooth the trace
with a window size of 80 samples. We train an RNN classifier
with the processed training traces and classify the traces in the
testing data. To further reduce the length of the traces sent to
the RNN model, we split a trace by window of 120 samples,
and each window is convoluted to a 16-dimension vector.
Therefore a trace will be compressed to 250 (30000/120) 16-
dimension vectors. Compressing the time-series has also been
adopted by other works in intrusion detection [73].

In our evaluation, we employ Bi-directional LSTM with
Attention (AttBLSTM) [74], which has been broadly used to
classify time-series, to classify a test trace to an app. Table X
shows the model hyper-parameters.
Results. MESHUP has 82.27% classification accuracy. In
comparison, the PRIME-PROBE method leveraged by [70]
yields 78% accuracy. We conclude coherence-based probe
can achieve satisfactory attack accuracy under the cross-CPU
setting. Admittedly, the accuracy is not high enough, mainly
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batch size hidden layer size drop out attention layer size
64 384 0.1 512

TABLE X: Hyper-parameters of the AttBLSTM model used
for app fingerprinting.

because the execution of those apps comes with a lot of
random factors, like random core location and random input.
Yet, it is surprising the coarse-grained coherence-based probe
has better accuracy than the fine-grained probe [70]. We
speculate the rise is resulting from better coverage of cache
transactions: our attack can probe transactions from all cache
sets of a CPU, while a stateful cache attack can only probe
one cache set at a time. The overall cache accessing frequency
derived under our probe characterizes an app better.
Website Fingerprinting. We have also tested the coherence-
based probe on website fingerprinting. The details are elabo-
rated in Appendix H.

VIII. DISCUSSION

Limitations. 1) To evaluate the eviction-based probe, we use
RSA as the victim application, whose mesh traffic mainly
belongs to T1-T2. Other applications may show different pat-
terns: e.g., I/O intensive applications could introduce promi-
nent mesh traffic between PCIe stop and LLC slices. We
plan to test such applications in the future. 2) MESHUP
bypasses the existing defenses at the cost of obtaining coarse-
grained information about cache activities. In stateful cache
attacks like PRIME+PROBE, the attacker can precisely evict a
cache set shared with a victim and learn the which memory
address/range accessed by the victim. However, MESHUP at
most tells which LLC slice the victim accesses. As such, we
choose the Java-based RSA implementations which leak more
information. 3) We chose Intel CAT as the defense following
recent cache side-channel attacks like Xlate [3]. The other
stronger defenses like DAWG [75] and temporal isolation [5]
are not tested because we cannot find their implementation
on Intel CPU (e.g., DAWG requires hardware modification)
or the mainstream OSes (e.g., temporal isolation builds on
seL4). However, as MESHUP is based on the stateless channel,
which admittedly is out of the mitigation scope of stateful
protections [5], we expect MESHUP to be effective under these
defenses. 4) For the attack against RSA encryption, we used
a script to filter the useful traces with hard-coded parameters,
but we expect these parameters can be replaced with a learned
classifier, e.g., an LSTM model. 5) Our evaluation is done
on Intel CPUs. In the future, we plan to test other CPUs
with mesh interconnects like ARM Neoverse [18]. 6) For
the core remapping experiment, the measurements are not
isolating the cases where core mappings change, which might
underestimate its impact.
Implications and Defenses. The key takeaway message from
our study is that the mesh interconnect on server-grade CPUs
introduces stateless cache side-channels. This is counter-
intuitive at first sight, but the new interconnect design inter-

twines the cache lines on the move from different applications,
introducing new types of resource contention. Together with
LoR [8], MESHUP draws a comprehensive picture about the
contention side-channel of CPU interconnect, and we hope
more attention can be spared on this class of issues.

For defenses, in Section VI-E, we proposed a simple so-
lution that isolates LLC to reduce the SNR for T1-T2 traffic
exploited by MESHUP. Yet, the other types of traffic still leak
information. On the other hand, if spatial isolation can go
a step further to partition interconnect bandwidth, MESHUP
might be thwarted. However, as mentioned in [5], “no support
for bandwidth partition exists on contemporary mainstream
hardware”. Though Intel recently proposed a technique named
Memory Bandwidth Allocation (MBA) [76], which limits
the bandwidth a core can issue to memory, the limit is an
approximation and insufficient for threat mitigation [5].

Instead of strong mitigation based on isolation, we believe
mechanisms that increase the aggression difficulty is more
likely to be adopted. One example is cache randomization. By
forcing the mapping between physical addresses and cache set
index dynamic and unpredictable, finding the right eviction
sets is expected to be more difficult, which could make the
probes of MESHUP unstable. However, recent studies [77],
[78], [79] have shown the previous approaches like CEASER-
S [80] and ScatterCache [81] are broken under new attack
methods. Following these discoveries, Song et al. proposed to
fix the flaws of the existing mechanisms [77] and Saileshwar et
al. proposed fully associative cache [82]. We plan to evaluate
whether the new methods are effective against MESHUP.

IX. CONCLUSION

In this work, we show stateless cache side-channel on the
mesh interconnect, or MESHUP, that can leak memory access
patterns of a victim program on server-grade CPUs. The side-
channel is different from previous cache side-channels, in
that it does not rely on stateful micro-architectural changes
made by the victim. Therefore it can bypass the existing
defenses based on spatial and temporal isolation. To reveal
the consequences of MESHUP, we analyzed RSA encryption
and application fingerprinting. The results show that MESHUP
is very effective. We believe mesh interconnect opens up new
opportunities for security research, and its implications should
be further examined.
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APPENDIX

A. Intel Skylake-SP cache Spec

We describe the cache specification of Intel Skylake-SP
processors, which we used as the evaluation platform.
Address Mapping. The lowest 6 bits reflect the block offset
within a cache line. The bits in the middle indicate the index
of the cache set containing the line (bits 15:6 for L2 and 16:6
for LLC). The upper bits form a cache tag, which indicates
whether the data is in the cache.

As LLC requests are all managed by CHA inside a core,
for LLC access, the CPU has to decide which CHA to talk
to. The decision is based on a proprietary hash function that
is not fully reverse-engineered yet [22], [83].
Cache Structure. For Skylake-SP processors, LLC is de-
signed as non-inclusive to the private caches. Before Skylake-
SP processors, LLC is inclusive, meaning that a cache line
in L2 cache has a replicate in LLC. For non-inclusive LLC,
an L2 cache line may or may not have a replicate in LLC,
which is determined by the cache eviction policy. As a result,
Skylake-SP has a much larger effective cache size (the sum
of L2 and LLC) compared to the previous generations (LLC
only).

63:17 16 15:6 5:0
L2 Tag L2 set index

OffsetLLC Tag LLC set index
Hash to LLC slice ID

Fig. 9: Mapping between memory address (physical) and
cache.

B. Defenses against Cache Side-channels

Software Defenses. Since OS controls the allocation of mem-
ory to programs, the access to the physically-indexed caches
can be isolated along with memory. Page colouring takes the

Size Associative Set
L1-I 32KB 8-way 64
L1-D 32KB 8-way 64

L2 1 MB 16-way 1024
LLC slice 1.375MB 11-way 2048

TABLE XI: Cache configuration for Skylake-SP, Cascade
Lake-SP and Cooper Lake-SP CPU families [62]. L1-I and
L1-D are for instruction and data separately.

advantage of the overlapping bits between cache set index
and page index (for virtual-to-physical address translation).
Pages can be assigned with different “colours” (i.e., the
overlapping bits), and the colour decides which cache sets
they are mapped to. Therefore, cache accesses are isolated
along with memory access. Initially being used to improve
system performance [84], [85], [86], page colouring has been
re-purposed to build defenses, by isolating the cache that the
untrusted code has direct access [55], [56].

Hardware Defenses. To provide better cache QoS, Intel has
implemented a technique named Cache Allocation Technology
(CAT) [6]. It allocates different cache ways to different COS
(class of service). Each core is also associated with one or
more COS. A core can access a cache way only when they
share at least one common COS. Still, directly enforcing cache
isolation with CAT is not straightforward, as the provided COS
is limited to 4 or 16. CATalyst [7] adjusted CAT to protect LLC
by separating it into a secure and a non-secure partition and
forcing the secure partition to be loaded with cache-pinned
secure pages. Comparing to CAT, Dynamically Allocated
Way Guard (DAWG) provides a more principled isolation
mechanism with modification to the existing hardware [75].
On ARM, hardware mechanisms like Cache Lockdown can
enable similar protection by pinning whole sets of the L1-I
and L1-D caches [87].

Hardware-based cache isolation and its extension are sup-
posed to mitigate the attacks that bypass the software defenses.
For example, by partitioning the page table and TLB with
CATalyst, XLATE [3] and TLBLEED [34] can be mitigated. To
defend against directory-based attack [22], Yan et al. proposed
SecDir to partition and isolate directories [53].

In addition to CAT, Intel TSX has been used for de-
fense [88]. Intel TSX introduces hardware transactions, in
which case transactions would abort if they are interfered. By
putting sensitive data and code in a transaction and pinning
it to a cache set, cache eviction triggered by adversaries will
lead to abort.

Temporal Isolation. Both hardware and software defenses
aim at isolating resources spatially, which could not cover all
resources. For example, small cache like L1 [3] cannot be
isolated due to insufficient page coloring granularity. Ge et al.
proposed to enforce temporal isolation with OS abstraction [5],
so the existing cache side-channels [22], [2] can be mitigated
when combining with spatial isolation techniques (hardware
and software). However, the defense is only applicable to the
seL4 microkernel.

17



C. check_conflict and find_ev

According to [4], [22], The check_conflict function
checks if an address x conflicts with a set of addresses U , by
checking if x is evicted when traversing x followed by U . If
x is evicted by U , it indicates U conflicts with x, otherwise,
it does not. [22] adapted this function to CPUs with non-
inclusive LLC, by pushing all lines in an L2 set to LLC before
measuring accessing time of x, which reduces false positives
and negatives.

According to [22], the find_ev function tries to find a
minimal EV within a given set of addresses CS. It starts by
randomly picking out an address x from CS and assigning the
rest addresses in CS′. It then repeatedly deletes addresses from
CS′ except those addresses making CS′ no longer conflict
with x. Those addresses should be in the EV . EV could be
extended by picking out those addresses in CS but conflict
with EV .

D. Layout of Xeon Scalable 8175

Table XII and XIII show the reverse-engineered layout of
Xeon Scalable 8175.

UPI PCIE PCIE RLINK UPI2 PCIE
0 4 9 14 19 24

IMC0 5 10 15 20 IMC1
1 6 11 16 21 25
2 7 12 17 22 26
3 8 13 18 23 27

TABLE XII: The disabled tiles of Xeon Scalable 8175 CPU.
Gray cell indicates the tile is disabled, including its core, CHA,
SF and LLC. The number in each cell is the ID of tile.

UPI PCIE PCIE RLINK UPI2 PCIE
0, 0 7, 19 12, 3 17, 16

IMC0 3, 18 8, 2 13, 15 18, 10 IMC1
4, 1 9, 14 14, 9 19, 22 22, 11

1, 12 5, 13 10, 8 15, 21 20, 5 23, 23
2, 6 6, 7 11, 20 16, 4 21, 17

TABLE XIII: Layout of Xeon Scalable 8175 CPU. Gray cell
indicates the tile is disabled. The two numbers in each cell
indicates the ID of CHA and core respectively.

E. Sequences of different SNR

Figure 10 shows the delay sequences of different SNR.

F. Phoronix Test Suite

We use 40 apps in the test suite of [70] for app finger-
printing. The 40 apps are selected across many categories,
like image processing, AI, scientific computing, database, etc..
The 40 apps are: Tesseract OCR, Bork, Stockfish, Ebizzy,
Sunflow, Mafft, Octave-benchmark, Compress-7zip, Parboil,
Npb, Hmmer, Ttsiod-renderer, Postmark, Gimp, Git, Vpxenc,
Hpcc, Influxdb, Tinymembench, Stress-ng, Numpy, Tensor-
flow, Mbw, Ramspeed, Cloverleaf, Askap, Mocassion, Oidn,
Mlpack, Cassandra, Av1, Clomp, Arrayfire, Build2, Intel-mlc,
Hpl, Lzbench, Osbench, Cloudsuite-ma, Memtier-benchmark.

SNR=82.3 k

3.2 k

SNR=102.3 k

3.2 k

In
te
rv
al
 (C

yc
le
s)

0 0.33 ms 0.65 ms
SNR=12

2.5 k

3.5 k

Fig. 10: Delay sequences of different SNR values.

G. Attacking Fast Modular Exponentiation

We evaluate MESHUP with the Fast Modular Exponen-
tiation algorithm implemented in Java following the code
found in [89]. This implementation has a timing side-channel.
Specifically, different key bit leads to different memory ac-
cess patterns and different calculation duration. MESHUP is
expected to probe the timing difference key bits and recover
the entire key sequence.

We assume the victim program runs in a core randomly
assigned by the OS. The attacker can then select a core among
the rest to construct key paths, according to the characteriza-
tion in Section IV. We do not randomize the attacker’s core
for a fair comparison with LoR [8], which fixes the core for
attacker. We tested 100 different keys with this RSA program
as the victim, and for each key, we let the program run 20
times. Hence, there are in total 2,000 traces collected by the
MESHUP probe.
Analyzing the Interval Sequence. Figure 11a shows the
interval sequence mapped to the first 8 bits of a d, which
is 01001010. As we can see, the start of each key bit
calculation comes with a sharp rise in the collected interval
sequence, mainly because of cache misses. Besides, bit 1 takes
longer so the interval to the next rise is larger than that of bit
0.

To automatically recognize all the rises and then recover
key bits, we use a threshold (2900, 4200) to keep rises first.
Figure 11b shows the data points after filtering. Then, the data
points are smoothed, i.e., taking the average of the points in a
window, as shown in Figure 11c. With the smoothed sequence,
the attacker starts to find the peaks over 600 cycles, which
are expected to be rises. Then, he/she examines the interval
between peaks to infer which key bit each rises corresponds
to.
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Fig. 11: (a) The raw interval sequence collected by attacker’s
probe. (b) The sequence after filtering. (c) The sequence after
smoothing, with circles and stars representing the starting time
of bit 0 and 1. The key stream is 01001010.

Edit Distance Avg. LCS
≤10 ≤50 ≤100 >100 Avg. Str Seq

Recovered 17 67 2 14 15.4 760.6 2039.5
Corrected 47 9 2 25 7.8 2040.0 2040.4

TABLE XIV: Results of the RSA key recovery experi-
ment (Fast Modular Exponentiation). “Str” means the longest
common sub-string. “Seq” means the longest common sub-
sequence. Average metrics for the recovered cases are com-
puted on the inferred keys whose edit distances are less than
50. For the error-corrected case, we choose 10.

Results. For each key used by the victim program, we compute
the edit distances between all the inferred keys with the ground
truth, and take the smallest value. Table XIV row “Recovered”
shows the distribution of the edit distances. Out of the 100
keys, 17 keys have edit distances less than 10, and 84 (17+67)
have at most 50. We look into the 84 keys, and compute
the average edit distance and two other metrics: the longest
common sub-string (LCSStr) and the longest common sub-
sequence (LCSSeq). The result suggests a large portion of the
key has been inferred. For instance, the average LCSStr is
760.6, meaning that a chunk of 760 consecutive bits can be
precisely recovered.

Moreover, we found the inference accuracy can be en-
hanced with error-correction techniques. We chose De Bruijn
graph [90], a technique widely used to correct gene sequence
errors, for this task. In essence, for a group of long sequences,
it breaks each one into sub-sequences and drops the less fre-
quent ones. Then it concatenates the remaining sub-sequences
back to a complete sequence. With the De Bruijn graph, for
a group of 20 inferred keys, we can correct the errors and
generate 1 key. We compare each generated key to the ground

truth, and the row “Corrected” of Table XIV shows the result.
This time, 47 inferred keys have an edit distance less than
10, and we further compute the average edit distance, LCSStr,
and LCSSeq for them. It turns out the average LCSStr can
be as high as 2040, meaning that only 8 bits are incorrectly
predicted.

H. Website Fingerprinting

Since rendering different websites introduces different pat-
terns of network I/Os like webfile downloading [91], which
can travel across the UPI (e.g., I/O traffic to NIC), sensitive
information about the victim could be leaked. We evaluate
such information leakage under MESHUP. In particular, we
fix Chrome on the CPU that does not connect to the PCH, and
invoke Chrome in headless mode to visit websites without ren-
dering their pages. We select the Alexa top 100 websites [92]
as the candidate set. Each website was visited 100 times,
during which a pair of coherence-based probes collects the
delay traces. For each website, 80 traces are used for training
and the rest 20 are for testing.

Like application fingerprinting (Section VII-C), we first
remove the abnormal samples and locate the starting point
of website rendering (all the parameters like normal range
and window size are the same). Since the rendering duration
of websites can be different, we pad or clip the traces to
20,000 samples. After that, we also employ AttBLSTM [74]
to classify the traces. Table XV shows the hyper-parameters
of the model we used.

batch size hidden layer size drop out attention layer size
64 256 0.3 256

TABLE XV: Hyper-parameters of the AttBLSTM model used
to website fingerprinting.

Results. The attacker has 82.25% chances to correctly predict
which website a delay trace corresponds to. Besides, the top-3
accuracy can be raised to 92.61%. Regarding the errors, we
believe they are mainly caused by UPI traffic rather than the
T6 produced by Chrome (T6 should be the main UPI traffic,
as described in Section IV-B), which interferes with the data
collected by the probes. In addition, the network connection of
our server is not always stable, which varies the downloading
duration of web files and introduces noises.
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