
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Userspace Bypass: Accelerating Syscall-intensive
Applications

Zhe Zhou, Yanxiang Bi, Junpeng Wan, and Yangfan Zhou, Fudan University;
Zhou Li, University of California, Irvine

https://www.usenix.org/conference/osdi23/presentation/zhou-zhe

Userspace Bypass: Accelerating Syscall-intensive Applications

Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou
Fudan University

{zhouzhe, 19210240167, 19210240003, zyf}@fudan.edu.cn}

Zhou Li
University of California, Irvine

zhou.li@uci.edu

Abstract
Context switching between kernel mode and user mode often
causes prominent overhead, which slows down applications
with frequent system calls (or syscalls), e.g., those with high
I/O demand. The overhead is further amplified by security
mechanisms like Linux kernel page-table isolation (KPTI).
To accelerate such applications, many efforts have been put in
removing syscalls from the I/O paths, mainly by combining
drivers and applications in the same space or batching syscalls.
Nonetheless, such solutions require developers to refactor
their applications or even update hardware, which impedes
their broad adoption.

In this paper, we propose another approach, userspace
bypass (UB), to accelerate syscall-intensive applications,
by transparently moving userspace instructions into kernel.
Userspace bypass requires no modification to userspace bina-
ries or code and achieves full binary compatibility. Specifi-
cally, to avoid overhead caused by frequent syscalls, kernel
identifies the short userspace execution path between consec-
utive system calls, and converts the instructions in the path
into code blocks with Software-Based Fault Isolation (SFI)
guarantee. According to our evaluation, I/O micro-benchmark
can be accelerated by 30.3 – 88.3%, Redis GET Requests Per
Second (RPS) can be improved by 4.4 –10.8% for 1B – 4KiB
data sizes, when the application is executed in a virtualized
setting with KPTI turned on. The performance boost will be
reduced when KPTI is turned off.

1 Introduction

System call (syscall) is widely used by a userspace applica-
tion to access the resources provided by the hosting oper-
ating system (OS) and extensively used for I/O operations.
However, syscall could incur prominent performance over-
head [43] when mechanisms like Linux kernel page-table iso-
lation (KPTI) [47] are turned on. Arguably, syscall is one of
the major performance bottlenecks for applications pursuing
high I/O requests Per Second (IOPS), e.g., those requesting
over a million IOPS [7].

Syscall-refactoring approaches. In the recent literature,
there are mainly two streams of work in achieving higher
IOPS by changing how syscalls are processed from the I/O
path, which we call syscall-refactoring approaches: 1) The
first stream of approaches integrate drivers and data process-
ing logic in the same address space by moving data processing
logic into kernel [26, 36, 53] or moving drivers responsible
for I/O into userspace (kernel bypass) [21, 51]. In this way,
the processing logic can directly talk to I/O devices and avoid
the overhead caused by the switching between user mode
and kernel mode [51]. 2) The second stream of approaches
batch syscalls and allow userspace processes to queue multi-
ple I/O requests and issue them together with only one single
syscall [43]. However, these solutions require developers to
change their code, which is usually a non-trivial task.
Our approach. In this paper, we propose userspace bypass
(or UB for short), which reduces the overhead introduced by
syscall-related I/O and achieves binary compatibility (i.e., no
application code needs to be changed or rebuilt) at the same
time. UB is motivated by the observation that applications
with high IOPS do not execute many instructions between
two consecutive syscalls (see Section 3.1). As a result, we
can transparently instrument the instructions between syscalls
under pre-defined security requirements (i.e., translating the
instructions into sanitized code blocks), and let kernel exe-
cute the blocks without returning to userspace. In this way,
the overhead caused by consecutive syscalls can be avoided.
Figure 1 illustrates this idea.

Yet, a few challenges should be addressed. First, only those
instructions that will potentially be executed between fre-
quently invoked consecutive syscalls deserve userspace by-
pass. However, without explicit information provided by the
developer, it is difficult to find such syscall sequence. As
elevating the instructions to kernel also introduces overhead,
the syscalls to be optimized need to be carefully chosen to
offset such overhead. Second, malicious applications may
exploit UB to steal kernel data and even execute privileged
instructions. In addition, buggy applications may pollute ker-
nel memory. Hence, it is critical for UB to guarantee kernel

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 33

user
space

do_syscall

syscall_
exit

user
space

syscall_
entry

user
space

syscall_
entry

do_syscall

user
space

user
space

do_syscall

User mode Kernel modeUser mode Kernel mode

……

do_syscall

user
space
……

syscall_
exit

syscall_
entry

……

Figure 1: Invoking system calls without and with UB.

safety by performing comprehensive sanitization on userspace
code and data. Finally, to achieve binary compatibility, the
elevated application code should be oblivious about whether
they are executed in kernel mode or user mode. The identical
execution outcomes with and without UB should be guaran-
teed, including memory order and atomicity for multi-thread
applications.

We address these challenges by adapting Dynamic Binary
Translation (DBT) [52] and Software-Based Fault Isolation
(SFI) [44] techniques. First, we profile syscalls by hooking
their entries, to learn which syscall invocations are frequent
(i.e., “hot” syscalls). Inspired by Just-In-Time (JIT) compi-
lation [17, 22, 48], we can obtain the userspace instructions
following the hot syscalls in the runtime. The instructions, if
within the same function, will be translated into Binary Trans-
lation Cache (BTC). Next, we iteratively execute the BTC and
extend the BTC from the exit instruction until we meet the
next syscall invocation. We perform instruction and address
sanitization to restrict the behaviors of BTC, and achieve ker-
nel control-flow integrity (CFI) and data integrity on the BTC.
UB does not re-order instructions or split memory access. As
a result, other threads can execute concurrently and safely
with the thread optimized by UB.

We implement a prototype of UB and evaluate its perfor-
mance gain in I/O micro-benchmark and real-world applica-
tions including Redis and Nginx. Under our default setting
(the tested application runs in a virtual machine (VM) and the
Linux KPTI is turned on), I/O micro-benchmark threads can
be accelerated by 30.3% to 88.3%. For Redis GET, the accel-
eration ratio ranges from 4.4% to 10.8% for 1B – 4KiB data
sizes. Nginx can be accelerated by 0.4% – 10.9%. UB can
accelerate raw socket-based packet filters by 31.5% – 34.3%.
We also evaluate the impacts of KPTI and virtualization on
UB’s performance gain. Since turning off KPTI reduces the
syscall overhead, UB is less effective. For example, the ac-
celeration ratio for I/O micro-benchmark drops from 88.3%

to 41.6% for the smallest I/O size. Hence, future processors,
which are expected to eliminate Meltdown and Spectre vulner-
ability in hardware, will benefit much less from UB. When the
applications run in the physical machine, UB achieves higher
upper-bound acceleration ratios in most settings compared
to VM, because IOPS is usually higher in this case, which
results in more syscalls that can be optimized.

We also compare UB with other systems that optimize
syscalls, including io_uring [23], F-Stack DPDK [45] and
eBPF [34] in our experimental study. The results show that
UB is less advantageous, comparing with io_uring in the
micro-benchmark, F-Stack for the Redis macro-benchmark,
and eBPF for raw sockets. However, UB has a unique ad-
vantage that no code change is required for the application
developers.

Finally, we acknowledge UB might introduce new security
risks under side-channels, undocumented x86 instructions,
and kernel races. We accordingly suggest a few defense ideas.

The code of our UB prototype is published at [15]. We
summarize the contributions of this paper as follows.

• We propose userspace bypass (UB), which directly exe-
cutes the instructions between syscalls in kernel mode,
to accelerate syscalls.

• We provide a concrete design that transparently trans-
lates userspace instructions to kernel-safe, sanitized BTC.
With this method, existing applications can be executed
without modification and enjoy the performance gain.

• We implement a prototype and evaluate it against several
high IOPS apps. The results prove the effectiveness of
UB.

2 Background

In this section, we first overview the syscall mechanisms and
their introduced overhead. Then, we describe the prior efforts
in reducing such overhead.

2.1 Syscalls and Their Costs

Syscall presents the default interface between userspace ap-
plications and kernel services. Software interrupt (e.g., int
0x80, which has been deprecated) and special instructions
(e.g., syscall/sysret created by AMD and sysenter/sysexit
created by Intel) can be leveraged to transfer the control from
user space to kernel space and vice versa after syscall.

Previous studies have shown that syscall invocation can
introduce prominent overhead on various applications and
scenarios [16, 35, 43], including direct costs and indirect
costs [43]. For the first case, because of switching between
user mode and kernel mode, extra procedures have to be exe-
cuted to save registers, change protection domains, and han-
dle the registered exceptions. For the latter case, the state of
processor structure, including L1 cache data and instruction

34 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

0 1K 2K 3K 4K 5K 6K 7K 10K 15K 20K

IP
C

TIMES (IN INSTRUCTIONS)

no-op pwrite

Figure 2: IPC after no-op syscall and pwrite syscall, mea-
sured on our platform (Intel Skylake and Linux).

caches, translation look-aside buffers (TLB), etc., can be pol-
luted by syscalls, and the Out of Order Execution (OOE) of
CPU has to be stalled for the order guarantee. As a result, the
user-mode instructions per cycle (IPC) would be decreased
after syscall.

A widely-used technique called kernel page-table isolation
(KPTI) [47] makes syscalls even slower. To defeat transient
execution attacks, e.g., Meltdown [29] and Spectre v3a [49],
OS kernel uses two sets of page tables for user space and
kernel space. As a consequence, CPU should switch to ker-
nel page table upon entering syscall, and switch back when
returning to userspace. Besides KPTI, virtualization may also
increase the context-switching overhead. For example, the
overhead of TLB miss (part of indirect overhead) inside VM
can be larger, as more page table entries have to be examined
than inside physical machines.

Below we summarize the observations from previous stud-
ies and our measurement about the concrete syscall overhead.

• A no-op system call with KPTI enabled can cost 431
CPU cycles, as measured by Mi et al. on Intel Skylake
and seL4 [35].

• As measured in our experiment platform (Intel Skylake
and Linux), the kernel prologue and epilogue (direct
costs) take 197 instructions (992 CPU cycles) for a no-op
syscall, suggesting the issue of syscall overhead persists
a decade after the study of Soares et al. [43].

• Also on our platform, a pwrite syscall can degrade the
IPC of the following userspace instructions from 2.9 to
0.2 (indirect costs). The IPC slowly goes back to 2.1
after executing 20,000 instructions. Figure 2 shows the
trend of IPC by time elapsed.

2.2 Performance Optimization on Syscalls
The research community is actively working on mitigating
the overhead resulting from syscalls. Below we describe the
related work with a comparison to our approach (also summa-
rized in Table 1).
Asynchronous syscalls. Syscall introduces a synchronous
execution model, as the user-mode execution is resumed after
a syscall is finished. Brown proposed non-blocking Linux
syscalls [5] that can be completed asynchronously parallel

Scheme Develop
Cost

Async
Needed

Accele-
ration

Popula-
rity

eBPF ++ X ++ ++
DPDK ++ X + ++

io_uring ++ X + +
UniKernel +++ - +++ -

FlexSC + - + -
UB - - +

Table 1: Comparison of schemes for optimizing syscalls.

to the userspace execution flow. But, this approach does not
completely decouple the syscall invocation from its execution.
So far, most of the syscall implementations on Linux are still
synchronized.
Syscall batching. As locality is a major performance factor,
executing syscalls in a batch has also been investigated. Ra-
jagopalan et al. proposed to group consecutive syscalls into
one (the result of a syscall is directly fed to the next) [38].
This approach is effective under the assumption that no com-
putation happens between two syscalls. Soares et al. proposed
to batch syscalls of multiple co-routines and asked the de-
velopers to change the thread model to M-on-N (“M user-
mode threads executing on N kernel-visible threads, with M
» N”) [38]. Thus, it only works when the task can be split
into many threads. Modern kernel provides native queues,
i.e., io_uring [23], to batch I/O requests from userspace pro-
cesses and reduce the occurrences of syscalls. In particular,
userspace code can issue multiple requests to the queue and
invoke one syscall to let kernel process the queue1.
Unikernel. To mitigate the overhead of context switching,
the Unikernel solutions run application code in kernel space
instead of user space. Examples include Loadable Kernel
Module (LKM) [42] and library OS [31, 40].
In-kernel sandbox. To reduce the occurrences of context
switching caused by syscalls, in-kernel sandbox allows appli-
cation code to run in privileged mode. For instance, eBPF [34]
allows developers to attach code into kernel trace points.
When kernel reaches these points, it will use a VM to execute
the attached code. However, eBPF places many restrictions
on the code, and kernel verifies if all the requirements are met
before execution, during which legal codes may be rejected
because of false positives in verification. Recently, Dmitry et
al. propose to use in-kernel sandbox to execute applications
entirely in kernel [27], in which context switching overhead
can also be mitigated.
Kernel bypass. Observing that kernel does not always have
to be involved in I/O tasks like packet handling, some
researchers proposed the kernel bypass approaches. One
prominent example is the Data Plane Development Kit

1io_uring also supports a kernel polling mode if the application has root
privilege, where no syscall is required.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 35

(DPDK) [11], which takes over I/O devices in userspace.
Specifically, I/O requests are submitted to devices via a shared
ring buffer, instead of syscalls. The buffer is maintained in
userspace, involving no kernel activity for I/O.

We find that existing approaches all require noticeable de-
velopment efforts. Different coding paradigms have to be fol-
lowed in order to use the syscall-refactoring primitives. Most
kernel bypass and syscall batching solutions (e.g., DPDK,
RDMA, io_uring) require application code to interact with
a queue pair asynchronously. Nonetheless, developers still
prefer to write program logic in the synchronous style. Refac-
toring the legacy code is also labor-intensive. As an example,
we compare the unofficial Redis with DPDK support [2] to
its official version (version 3.0.5). We find that the former
includes 9,984 extra lines of code (LoC) to support DPDK,
which accounts for 10% of the LoC of the official version.
Another example is Unikernel: It requires developers to write
kernel-mode code, which is unfortunately difficult to debug
and prone to errors like memory corruption (there is no mem-
ory isolation). In addition to changing the application code,
special userspace drivers may be required for kernel-bypass
solutions [24].

3 Design Overview

To address the aforementioned issues, we propose userspace
bypass (UB), a new primitive for syscall optimization. UB
aims to fulfill the following three design goals (DG).
DG1: Minimizing the manual efforts of developers. Dif-
ferent from syscall-refactoring approaches, which require de-
velopers to change their legacy code or adjust to asynchronous
programming, UB optimizes the syscalls at the execution time,
which meanwhile does not impact application’s functionality.
DG2: Minimizing changes to system architecture. Syscall-
refactoring approaches may change the current system archi-
tecture, e.g., mapping and binding devices to userspace. In
contrast, UB keeps the current system architecture unchanged,
including device driver and I/O harvesting models.
DG3: Comparable performance to syscall-refactoring ap-
proaches. UB aims to reduce the direct and indirect costs of
syscalls, and achieve similar performance boost compared to
syscall-refactoring approaches.

3.1 Syscall-intensive Applications
We focus on optimizing applications of high IOPS, e.g., Redis
and Nginx, which are also syscall-intensive. By analyzing
their code and runtime behaviors, we identify the following
two insights that guide the design of UB.
Lightweight userspace instructions in I/O threads. We
find that the computation workloads between I/O events are
usually lightweight for the examined applications. Moreover,
the number of instructions between two consecutive syscalls

is usually small. One explanation is that such applications
follow a popular I/O model that separates I/O-intensive work-
load from CPU-intensive workload in different threads. For
example, Redis server has a main thread that dispatches ac-
cepted sockets to I/O threads [10], which conduct I/O from/to
kernel and let the main thread complete the CPU intensive
computation. With such a design, the instructions between
I/O events simply handle buffer movement. We also profiled
syscalls invoked by Redis (in total 3M), and found half of
them are followed by less than 400 userspace instructions
(around 200 cycles when IPC is 2) before the next syscall,
which is faster than executing a syscall itself (e.g., 431 cy-
cles [35] as described in Section 2.1).
Amplified direct and indirect costs. Section 2.1 overviews
the direct and indirect costs of syscall in general, and those
costs can be amplified in syscall-intensive applications. As
shown in Figure 1, the frequency of entry and exit rises lin-
early following the frequency of syscall invocation. The indi-
rect costs due to TLB misses, OOE stalls and cache misses
are also non-negligible, especially when the syscall handles
lighter tasks (IPC drops to 0.74 for no-op syscall, and 0.21
for pwrite, as shown in Figure 2).

3.2 UB Modules
Based on the above considerations, we are motivated to design
UB in a way that it can detect the occurrences of syscalls,
and elevate the userspace instructions between consecutive
syscalls to kernel through binary transformation. Figure 1
illustrates our idea. Although the idea seems simple at the
high level, a few challenges should be addressed to enable
UB for real-world, full-fledged applications.

• The application code is less trustworthy compared to
the kernel code. Hence, necessary isolation should be
performed to confine its capability after being moved to
kernel. However, identifying the untrusted regions and
governing them with the right policies are non-trivial.

• Given that isolation would incur extra costs, it is not
always beneficial to transform every chunk of userspace
instructions. But, when to perform transformation and
how to reduce its overhead are unknown.

UB addresses these challenges with three key components.
1) A “hot” syscall identifier that monitors the execution of
the target application, profiles the invoked syscalls, and de-
termines when userspace instructions need to be elevated;
2) a Just-in-Time (JIT) translator that converts the userspace
instructions into Binary Translation Cache (BTC) that is in-
strumented with isolation policies; 3) a kernel BTC runtime
that executes the translated code. Figure 3 overviews the de-
sign of UB.

Note that the components in UB are not fundamentally
new concepts. BTC is a standard component for Dynamic
Binary Translation (DBT) [3, 22]. The JIT translator follows
the guideline of Software-Based Fault Isolation (SFI) [44] in

36 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

code instrumentation and isolation policies. Yet, we find that
the existing systems cannot be directly used in our problem
setting. Below we briefly discuss the main modules in UB.

Kernel space

Fast path

Syscall

Daemon

Target Process

Syscall
entry Do

syscall

BTC

Code gen

Translator

Runtime

Control flowRuntime info

Syscall
profiler

Syscall
exit

w/ UB
w/o UB

SFI infoinfo

S1

S2 S3
S4

S4

S5

S6

Figure 3: Overview of the UB framework. Every time a thread
calls syscall (S1), hot syscall identifier hooks it (S2) and dis-
patches it to do_syscall (S3), after which kernel may return
to user mode if the syscall is not hot (S6), or send it to BTC
runtime for UB (S5).

Hot syscall identifier. This module runs in kernel mode and
hooks each syscall. By analyzing the runtime statistics, it
can identify which syscall instructions are hot, i.e., ones with
high chances to be followed by another syscall shortly. The
userspace instructions between two consecutive hot syscalls
will be elevated to kernel and accelerated next time when the
application runs. To avoid introducing large overhead due to
runtime monitoring, this module runs intermittently.
BTC translator. The BTC translator converts the userspace
instructions marked by the previous modules to BTC and
has it executed by the kernel BTC runtime. Under the SFI
guidelines, it converts dangerous instructions (e.g., indirect
control-flow transfer) to the safe ones (e.g., direct jumps), and
instrument checks to constrain memory access and control-
transfer behaviors. The translator runs in a separate, indepen-
dent userspace process to avoid introducing its code to kernel.
The translation does not block the application execution, and
the translated code is executed next time when the same code
path is visited.

In addition to optimizing userspace instructions between
a pair of hot syscalls, we also consider the acceleration on a
sequence of hot syscalls. We call the enclosed userspace code
fast path. UB aims to chain such userspace code and acceler-
ate them altogether. The fast path is discovered incrementally
by watching the jump targets. The details will be discussed in
Section 5.

4 Hot Syscall Identifier

Criteria of userspace bypassing. A region of userspace in-
structions should be elevated when its performance gain out-

weighs the translation and instrumentation overhead by BTC
translator. We measure the performance gain against different
userspace path length (i.e., the number of instructions), and
consider the regions with short path. The major reason is that
the instrumentation costs increase rapidly for longer paths,
because more instructions have to be monitored. We consider
1,000 instructions (termed Tpath) as the threshold for the short
path length2. Through an empirical study, we observe obvi-
ous performance gain (over 20%) with this path length (see
Section 6.2).
Module design. This module aims to discover hot syscalls
that enclose a short userspace path. We resort to online anal-
ysis to achieve seamless profiling. Specifically, this module
hooks syscall entry and counts the number of instructions
between two consecutive syscalls. The two syscalls are classi-
fied as candidates of hot syscalls when the instruction number
is less than Tpath. Below we describe the detailed steps.

• Syscall sampling. Monitoring every syscall invocation
will introduce high performance penalty to the applica-
tion execution. Hence, we sample syscalls and conduct
the follow-up analysis only when a thread is issuing
syscalls frequently (e.g., I/O threads). According to our
measurement on syscall-intensive applications (e.g., Re-
dis and Nginx), at least 100K syscalls (termed Tsys) are
issued per second (6M per minute), and we choose to
profile less than 10% of Tsys syscalls (up to 500K syscalls
every minute). Therefore, most syscalls are not sampled
and not interfered.

• Coarse-grained profiling. To further reduce the pro-
filing overhead, we check whether a monitored thread
invokes syscalls at high frequency. If the thread invokes
less than 50K syscalls per second (half of Tsys), the mod-
ule will not conduct the next fine-grained syscall profil-
ing. In this, the threads with low IOPS will be skipped.

• Fine-grained profiling. For a thread invoking syscalls
frequently, this module further analyzes which syscall
instructions are invoked frequently. The frequent ones
deserve userspace bypassing as more performance boost
can be gained. We monitor 15K syscalls (15% of Tsys)
of each round, and maintain a table recording, for each
invoked syscall instruction, its location register (RIP)
and a counter of how many times the next syscall is
invoked within 4 microseconds (approximately the time
of executing Tpath instructions). We consider a syscall
frequent when the counter is larger than 900 (6% of the
profiled 15K syscalls). These syscalls and their enclosed
userspace instructions will be handled by BTC translator
in the next stage.

One might wonder if the performance of this module is
sensitive to the parameter selection. To test the sensitivity, we

2Soares et al. consider the invocation of a syscall frequent if it is invoked
once every 2,000 or less instructions [43]. We use a more conservative
number to accommodate different platforms.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 37

check if hot syscalls of Redis and Nginx, two applications
used by our experiments, can be correctly discovered on three
different machines: a PC with Core i5 10500 (year 2021), two
servers with Xeon 8175 and 8260 (year 2017 and 2019). All
hot syscalls can be correctly identified, suggesting parameter
tuning could be skipped in most cases.

5 BTC Runtime and Translator

In this section, we describe how the BTC translator converts
userspace instructions into kernel BTC and meets the security
requirements. Our BTC translator follows the procedure of
Dynamic Binary Translation (DBT) [19, 22, 48]. In general,
given a path consisting of basic blocks in binary and triggering
an event (e.g., hot syscall in our case), DBT dissembles it,
translates it with a SFI rulebook, and compiles it to BTC for
the future execution. Due to SFI, the malicious or unwanted
behaviors of the translated code can be contained, and safely
run by the BTC runtime.

5.1 BTC Runtime
The translated code block is executed by a BTC runtime in
kernel. The BTC runtime holds local variables in kernel stack,
which can be accessed by the instrumentation instructions
within the BTC for policy enforcement and context switching.
The local variables include: 1) the saved kernel context, i.e.,
callee-saved registers, 2) the values of reserved registers, and
3) the indirect jump destination information which is used to
build the fast path.

Before executing the BTC, the runtime prepares the re-
turn status for userspace, i.e., through restoring the userspace
context saved on syscall entry (e.g., pt_regs for x86_64).
After a block is finished, the runtime processes the return
status of the BTC and takes further actions. The execution of
a BTC might exit the runtime in the middle when the jump
target is missing, e.g., when a new path is encountered. In
this case, the runtime records the information about this jump
and immediately returns to userspace, i.e., the jump target.
We make the userspace memory accessible to the BTC run-
time, so all changes on memory are kept. Changes made to
registers are updated to userspace context (i.e., pt_regs for
x86_64), which will be written to registers when kernel re-
turns to userspace. Therefore, userspace state changes made
by the BTC are also preserved and visible to other threads,
which ensures the application logic is not changed under UB.

The execution of the BTC might also exit when a syscall
instruction is encountered. In this case, a fast path between
two consecutive syscalls has been completely executed in ker-
nel, which indicates a successful userspace bypass. The BTC
runtime emulates the syscall trap, by looking up the syscall
number against the syscall table and dispatching syscall pa-
rameters to the corresponding do_syscall function (i.e., ex-
ecuting the syscall). After do_syscall returns, the BTC run-

time checks if the next syscall instruction is again hot. If the
answer is yes, the runtime tries to conduct another userspace
bypass. In this way, do_syscalls and userspace bypass can
be chained, which is similar to direct branch chaining of DBT.
In an ideal case, a whole thread can be executed in kernel.

Fast path discovery. The performance of UB highly depends
on the identification accuracy of fast path, and we leverage
an incremental, JIT-style approach to achieve high accuracy.
Given an entry address, i.e., the instruction next to a hot
syscall, the BTC translator first discovers a part of the fast
path, by dissembling the code segment of the target thread
from the entry address iteratively. The potentially unreachable
paths are skipped by the translator in each iteration. Specifi-
cally, the translator only follows direct jumps and stops at the
call instructions, which forces the translator to handle code
only within a function at one iteration and consider it fast
path. When an indirect jump or call is indeed made later, the
target information will be collected by the BTC runtime and
sent to the translator to extend the fast path after replacing
the jump instructions (see Section 5.2.1). Such an approach
is similar to the one adopted by QEMU [9], but we do not lift
the binary to its intermediate representation.

5.2 BTC Translator

Below we describe how the security policies are instrumented
into the userspace code. We follow the SFI principles to pro-
vide data-access policies and control-flow policies [44] on
kernel, and the implementations are inherited and extended
from Nacl [52], which sandboxes the untrusted x86 native
code in browser. Noticeably, Nacl assumes source code is
available so SFI rules can be enforced under static compila-
tion. In contrast, UB performs DBT on the binaries. As such,
the SFI rules have to be adjusted and extended.

Threat model. We assume the userspace code is untrusted,
which could contain arbitrary code and data, and the side-
effects include unmediated access to kernel memory, privi-
leged functions, etc. The goal of UB is to ensure the userspace
code cannot gain more privilege (and do more harm) after
it is elevated to kernel, i.e., protecting kernel’s control-flow
integrity. Noticeably, this goal is different from guarantee-
ing control-flow integrity [1] on the userspace application
(elaborated in Section 5.3). We take a conservative approach
in designing UB and avoid elevating a fast path when the
consequences can not be immediately determined (e.g., the
jump targets are unknown during translation). We focus on
x86_64 platform but the proposed techniques could be easily
generalized to other platforms. Below we describe the imple-
mentations related to jump, register, instruction, and memory
access that ensure security under this threat model.

38 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2.1 Jump Sanitation

The inner sandbox of Nacl checks the explicit control flow
expressed with calls and jumps, and disallows memory deref-
erencing on indirect jump and call instructions. The targets
of jumps are confined within the sandbox. In contrast, the
entire kernel memory space is open to elevated userspace
code under UB. Therefore, we take different approaches to
sanitize jumps.
Direct jump. To prevent the code in BTC from jumping to
an arbitrary address, the translation only happens when the
jump target is known. In other words, only direct jumps whose
targets are known are processed. The address sanitization is
described in Section 5.2.3.
Indirect jump. Yet, userspace fast path may contain indirect
jumps, and we deter BTC from processing such path till the
targets are known. In particular, the translator inserts checks
that compare the targets against a target address table (similar
to jumptable [22]) when encountering the associated code at
first. If the target address is not in the table, the control flow
will exit BTC runtime. When such an exit is triggered during
executing a BTC block, the BTC runtime sends the jump
instruction address (i.e., RIP of the address) and the target
address to the BTC translator, and extends the fast path, as
described in Section 5.1.

We show an example in Figure 4. The indirect jump (jump
to RAX, located at 0x123) is initially translated to writing
down the jump target (saving RAX to stack) and exiting to
BTC runtime (jump to exit_indirect_jmp). When the path
P1 is firstly executed, the BTC runtime learns a target 0x456,
and the information is sent to the translator, which updates the
BTC by adding a target table entry. After that, the path P1 is
added to the BTC, and it will not trigger exit_indirect_jmp
for the next time. If P2 is reached later, another destination
0x789 can be learnt and the BTC will be updated, so the fast
path is further extended.

CMP RAX, 0x456
JZ loc_0x456
CMP RAX, 0x789
JZ loc_0x789

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123 → 0x456
P2 add info: 0x123 → 0x789

……

P2 execute

CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

……

0x789: XX 0x456: XX

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P2

P1: Path 1
P2: Path 2

Start status

Figure 4: An example of translation under jump sanitation.

As the application runs longer, more indirect jump tar-
gets can be learned. The resulting BTC can eventually cover

the entire fast path. The checks inserted into the BTC can
perform efficiently because: 1) indirect control-flow transfer
instructions do not appear frequently, based on our empirical
analysis on the syscall-intensive applications and previous
studies [18]; and 2) CPU is allowed to speculatively jump to
the destination under out-of-order execution without waiting
for the destination check.

5.2.2 Register Remapping

To protect kernel registers and stack, the BTC translator dis-
allows the BTC code to access stack registers (i.e., RSP, RBP,
and RIP). Besides, some registers are reserved for BTC run-
time and cannot be accessed by the BTC code as well. Hence
we develop this module to manage the registers.

Specifically, the BTC translator uses the M reserved reg-
isters in BTC to serve the potential access to N registers
(N = M+3, 3 are for stack registers). As M < N, the trans-
lator needs to schedule registers. The N registers have their
values stored in local variables, and the translator chooses one
from the M reserved registers to temporally act as a special
register with renaming. The translator also inserts code to
synchronize the N registers to local variables on stack. As a
result, the behaviour of the BTC code is the same as the fast
path in the user space.
Register reservation. The translator reserves R12- R15 (M =
4) for BTC runtime use, as they are the least frequently used
in common userspace applications (less than 1% usage fre-
quency [18]). When they appear in the fast path, renaming
will occur. We also optimize our renaming mechanism for
frequently-used special registers (i.e., RSP), by letting the
translator fix the reserved registers to hold their values. Doing
so reduces the occurrences of the costly register synchroniza-
tion.

5.2.3 Instruction Sanitization

Privileged instructions (e.g., sysret) are not allowed to ap-
pear in the BTC, to avoid privilege escalation by the malicious
code that exploits UB. During translation, the translator avoids
elevating a fast path to the kernel if it contains any privileged
instruction.

Due to register remapping, some instructions have to be
rewritten. For stack operation instructions like PUSH/POP, the
translator substitutes them with multiple instructions. Take
POP as an example. The translator first adds an instruction to
MOV the operand to the popped target from the memory ad-
dressed by the reserved register (i.e., the acting stack pointer),
and then updates the reserved register with the new stack
pointer value, i.e., plus 8.

5.2.4 Memory Access Sanitization

To prevent unauthorized access to the kernel memory, the
translator sanitizes all memory access instructions. For ev-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 39

ery such instruction, the translator inserts address checking
instructions before the instruction, such that only userspace
addresses are allowed to be accessed, i.e., the addresses start
with 0. Similar to address masking of SFI [44], the translator
shifts left the address by one bit and then shifts it right by one
bit, to fulfill the address requirement. Two extra instructions
(i.e., SHL and SHR) are introduced to this end, but our evalua-
tion suggested the extra overhead is negligible (0.4%). Note
that the added checks do not prevent BTC from accessing
unmapped memory region and triggering page fault, and we
handle it with the procedure described below.
Page fault handling. We modify the page fault handler to
monitor the page fault events. For minor fault and major page
fault, the page fault handler behaves the same for kernel mode
and userspace mode. Therefore, faults caused by the userspace
applications are resolved in the same way as without UB.
When invalid page fault (i.e., illegally accessing some memory
regions) happens, the execution of BTC code is aborted.

Nacl also isolates the memory space between the exten-
sions and the host browser, with the help of the segmentation
provided by x86 CPUs. As such, extensions’ instructions can
only access memory within a segment and instructions to
modify segment states are not allowed. However, although
x86_64 still provides segmentation, it only adds a segment
offset to the address but does not check segment boundary,
which cannot be directly used for memory isolation.

5.3 Security Guarantees

The translated BTC has the following security properties
(termed SP), and they jointly make UB fulfill SFI policies [44]
on kernel.
SP1: Kernel control-flow integrity (CFI) for BTC. This
property is guaranteed because when the BTC runtime hands
control flow over to the userspace, the execution will only
terminate through the exit point. More importantly, when the
runtime executes the BTC, the thread cannot jump to a loca-
tion unknown to the translator. For direct control-flow transfer,
the destination can only be a label of a known basic block
that has been translated. Indirect control-flow transfers are
all translated to direct transfers by replacing the destinations.
Therefore, the BTC prevents malicious code from hijacking
the kernel control-flow after it is elevated.

We want to point out that UB does not claim to add ex-
tra protection against control-flow hijacking, e.g., ROP, JOP,
COOP [4, 6, 8, 37, 41], and they can still occur in userspace.
Though the attacker can construct gadgets when the destina-
tion checks are passed, jumping to the kernel code segment
from BTC is never allowed, as it can be detected and aborted
by the translator.
SP2: Kernel data (memory and register) integrity. For ker-
nel context (or registers), we design BTC runtime to be com-
patible with the calling conventions, and the caller (kernel)

context is saved on the stack before jumping to the BTC,
which is recovered before returning to kernel instructions.
The context switching is lightweight, as it does not cause
privilege transfer.

For kernel memory, access sanitization ensures that no ker-
nel memory can be accessed by the sanitized instructions,
hence the kernel stack will not be tainted. Though runtime
local variables must be accessible by the instructions in BTC,
they cannot be exploited by malicious programs to touch
the kernel stack. Only intentionally inserted instructions can
touch the local variables referred by the stack base pointer,
which stores runtime information like swapped-out registers
(see Section 5.2.2). Because kernel CFI is guaranteed, execu-
tion would never jump to these instructions.
SP3: No privileged instructions in BTC. It is explained in
Section 5.2.3.
SP4: Dead loop break. We also consider the attacks and
bugs against the availability of the system resources. For
instance, userspace applications may fall into a dead loop
because of bugs or intentionally. As a countermeasure, the
translator maintains a counter in BTC runtime to keep track of
the number of instructions already executed. Once the counter
exceeds a threshold, the execution flow can exit to runtime
and in turn return to userspace, which avoids the kernel being
blocked by the BTC code.

5.4 Thread Safety

Special attention should be paid to multi-thread userspace
applications, because UB has no control over other threads
except the one elevated to kernel. Memory order and atomicity
have to be preserved to avoid data race. Fortunately, thread
safety is automatically guaranteed by the translator and we
explain it below.
Memory order. To preserve memory order, the translator
regards all userspace memory as volatile, and only inserts in-
structions between userspace instructions without optimizing
the block (e.g., reordering instructions or caching memory
modification in registers). Yet CPUs can still reorder memory
loads and stores according to their memory model. The origi-
nal memory fences placed by the userspace applications are
all inherited, and the translator does not insert extra fences.
Atomicity. The translator takes special measures to guarantee
atomicity when using multiple instructions to emulate one
userspace instruction. When translating an instruction, the
translator prefers to use one instruction that has the same op-
code as the original one. Hence, the atomicity of the original
instruction is automatically preserved. For example, instruc-
tions with a lock prefix are translated to ones still with lock
(e.g., LOCK MOV). If more than one instruction is needed for
emulation, memory load or store must be completed in a sin-
gle instruction. For example, when translating PUSH RIP, the
offset address of the next instruction must be moved to the

40 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

userspace stack top. From the view of the translator, when
BTC runtime reaches the instruction, the value of RIP is stat-
ically known and becomes an immediate number. However,
x86_64 does not have an instruction to directly move a 64-bit
intermediate value to memory. As a result, the translator gen-
erates instructions that first move the immediate value to a
64-bit reserved register and then move the 64-bit register to
the top of the userspace stack.

6 Evaluation

We implement the prototype of UB for Linux kernel 5.4.44.
The BTC runtime is implemented as a kernel module with
416 lines of C code, which hooks syscall epilogue to conduct
syscall identification and manage BTC runtime. The translator
is implemented with 786 lines of Python code at userspace
(except the dependant Python disassembler miasm and gcc
assembler as), which communicates with the BTC runtime
kernel module via sys file. The kernel is modified by adding
only 6 lines of codes to the syscall entry to allow the module
to hook syscalls.

We evaluated our prototype in an I/O micro-benchmark
and two real-world applications (Redis and Nginx) for macro-
benchmarks. It is also compared to related technologies in-
cluding DPDK, io_uring, and eBPF. To evaluate these appli-
cations, we set up a virtualized environment and a bare-metal
environment. The bare-metal environment consists of a client
machine and a server machine3, which are connected within
the 40G Ethernet LAN. The virtualized environment runs
on the server, with NIC pass-through being enabled. For the
micro-benchmark I/O experiment, we run the tests directly on
server, as it does not require network. For other scenarios, we
run the client application in the client machine and the server
application in the server machine, so the traffic goes through
the physical network. To show the effects of virtualization
and KPTI, which impact the syscall performance as explained
in Section 2.1, we run each server application in four set-
tings: KPTI on/off × VM/physical machine. When KPTI is
on, Linux turns on PCID to mitigate performance degradation.
All the following tests are conducted 10 rounds, and the aver-
age IOPS or Requests Per Second (RPS) values are shown.
For the results demonstrated in Section 6.1 to Section 6.4, we
focus on the setting of VM with KPTI on and briefly describe
how the results are changed under other settings. In Table 2,
we list the acceleration ratios among different settings.

3The server machine has an Intel Xeon 8175 CPU (24 cores), 192GB
memory, Samsung 980 pro NVME SSD, and Mellanox Connectx-3 NIC. It
runs Ubuntu 20.04 with 5.4.44 kernel. When set up for VM, it uses QEMU-
KVM 1:4.2-3, and assigns 24 cores to the VM. The client machine has an
Intel Xeon 8260 CPU, 128GB memory and Mellanox Connectx-5 NIC.

Test VM Physical

w/
PTI

In-mem 30.3% – 88.3% 38.4% – 112.9%
Redis GET -3.7% – 10.8% -5.4% – 6.4%
Redis SET -0.4% – 12.4% -3.2% – 16.1%

Nginx 0.4% – 10.9% -1.4% – 13.4%
Socket 31.5% – 34.3% 30.9% – 38.6%

w/o
PTI

In-mem 14.3% – 41.6% 16.4% – 52.0%
Redis GET -2.0% – 4.6% -6.4% – 3.9%
Redis SET -5.5% – 4.9% -0.9% – 2.8%

Nginx -1.2% – -0.3% -0.2% – 3.0%
Socket 14.5% – 17.8% 9.2% – 19.8%

Table 2: Ranges of acceleration ratios for different settings.
“In-mem” means the in-memory file access benchmark.

6.1 I/O Micro-benchmark

We first consider accelerating a thread that purely performs
file I/O requests via blocking syscalls as the micro-benchmark,
which approximates the best-case scenario for UB. The thread
runs a tight loop that sequentially reads files from kernel to
userspace buffer via READ syscall 8.39 M times. The real-
world applications may exhibit different patterns like exe-
cuting more instructions between consecutive I/O requests,
reducing the acceleration ratios by UB. For comparison, we
employ io_uring (liburing-2.2) for the same task (i.e., tight-
loop READ syscall) and compare the IOPS.
In-memory file access. We create a large file in ramfs to
avoid possible disk bottleneck, in order to assess how UB
accelerates syscalls more accurately. Admittedly, this setting
makes the micro-benchmark less realistic. We gradually in-
crease the size of the buffer for each read and evaluate the
acceleration ratios of UB under different buffer sizes.

Figure 5 shows the results. For the virtualized environ-
ment with KPTI on, UB accelerates syscall-based I/O by
88.3%±0.75%

4, when the I/O size is small (64B). For larger
I/O size, IOPS drops for both UB and baseline, and the ac-
celeration ratio drops to 30.3%±0.96% for the 4KiB I/O size,
because fewer syscalls are invoked. Turning off KPTI in-
creases the IOPS, but the acceleration ratio of UB drops to
14.3%±1.83% – 41.6%±1.73%, because the syscall overhead is
reduced. The acceleration on physical machine is higher es-
pecially when the I/O size is small (e.g., 112.9%±1.78% when
the I/O size is 64B when KPTI is on), as the IOPS on physi-
cal machine is higher and UB saves more context switching
overhead.

For io_uring, we first examine the different queue depths
(i.e., how many requests can be batched) from 1 to 1024, and
found IOPS is stable after the depth reaches 128, as shown in
Figure 6. Hence, we set the depth to 128 for its comparison
with UB. It turns out io_uring yields more IOPS for most
buffer sizes, according to Figure 5. When running in physical

4We report the acceleration ratio together with the standard deviation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 41

Figure 5: IOPS of READ syscalls, io_uring and UB syscalls
against different buffer sizes. The percentage number is the
acceleration ratio of UB against the baseline. Figure 7, 8, 9
and 10 follow this style.

Figure 6: IOPS of different io_uring depth.

machine, for the small size (64 Byte), UB yields higher IOPS
than io_uring, though it is expected io_uring should always
outperform UB. We have not found a good explanation, but
we notice that IOPS of io_uring increases by 13% when up-
grading the Linux kernel from 5.4.44 (the version used by
our testing environment) to 5.15. Hence, it is possible that
io_uring will outperform UB consistently on newer Linux.
File access on NVMe. We also test reading a file in NVMe
disk by 1KiB block size, and show the comparison in Table 3
(“w/o sum”). We only consider the physical machine setting,
because when VM accesses a file in a virtual NVMe disk, the
file will be automatically cached into memory a priori, which
behaves similarly to in-memory file access. The IOPS can
be increased from 779±5K to 852±3K, yielding 9.4%±0.3%
acceleration (KPTI on). When KPTI is off, the baseline in-
creases to 810±22K while UB increases slightly to 858±10K,
making the acceleration ratio smaller.

We also consider the situation that an I/O thread conducts

lightweight calculation, like parsing packets. When the com-
putations between consecutive I/O requests have dependency,
the requests cannot be batched. Specifically, we set the I/O
thread to calculate the sum of the buffer by treating it as a
64-bit integer array, after retrieving the buffer from kernel.

w/o sum w/ sum
KPTI on 779±5 (852±3) 630±4 (793±3)
KPTI off 810±22 (858±10) 686±65(795±6)

Table 3: KIOPS of reading file on NVMe disk (1KiB size)
on physical machine (w/o sum), and reading together with
integer summation (w/ sum). The UB accelerated number is
shown in the bracket.

As shown in Table 3 (“w/ sum”), even the lightweight
computation could reduce considerable amount of IOPS. The
baseline IOPS drops by 149K, while it only drops by 59K
when UB is on, as such lightweight calculations in userspace
can be entirely ported into kernel for execution, so their IPC
is less affected by syscalls.

6.2 Redis

We choose a popular key-value store engine Redis as one
macro-benchmark to test how UB handles real-world work-
loads. We evaluate Redis 6.2.6 with the built-in Redis-
benchmark tool [39] to generate workload. We run the Redis
server with its default configuration and launch the Redis-
benchmark with 2 threads. The connection number is kept
at the default value 50. In each round, the client issues 1M
requests.

By default, Redis completes most of its work within the
main thread, which is responsible for not only I/O but also
computation tasks like hashing. For a normal workflow, which
is also described in [30], the main thread invokes EPOLL to
get a list of readable sockets. For each readable socket, the
thread READs the socket and then processes the request. As a
result, the userspace paths following READs are long (from 3k
to 20k), as the computation tasks happen there. At last, Redis
WRITEs responses to corresponding sockets one by one, with
a small number of instructions in between (around 300).
Results. Figure 7 shows RPS with and without UB for GET
and SET data of sizes ranging from 1B to 16KiB. When tested
in VM with KPTI on, for GET, the acceleration ratio ranges
from 4.4%±1.52% to 10.8%±2.69%, when the data size is less
or equal than 4KiB. The ratio drops to −3.7%±0.51%, when
the size rises to 16KiB. Turning KPTI off drops the accel-
eration ratio to between −2.0%±1.32% and 4.6%±1.96%. The
negative acceleration ratio suggests the overhead brought by
UB outweighs the syscall overhead saved by itself. Executing
on physical machine observes a different range: −5.4%±1.17%
to 6.4%±2.01% for KPTI on and −6.4%±3.02% to 3.9%±1.67%
for KPTI off. Noticeably, the RPS of Redis is much smaller

42 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: RPS of Redis GET and SET in different data sizes.

than that in our I/O micro-benchmark, so the expense from
syscall is not the dominant factor. As a result, the acceleration
ratio is much smaller.

Regarding SET, the acceleration ratio ranges from
−0.4%±2.19% to 12.4%±3.96% in VM with KPTI on. Simi-
lar trend is observed when KPTI is turned off and running in
physical machine. Noticeably, Redis RPS drops significantly
over 1KiB data size for both SET and GET, and similar obser-
vation was reported in the official documentation of the Redis
benchmark [39].

Surprisingly, we found the RPS on VM is often higher
than physical machine, though the virtual setup is supposed
to yield lower RPS. We do not have a good explanation for
why the opposite happened for Redis.

Redis
Server BTC User

Space
Do

Write
w/o UB 108.57 – 34.29 36.73
w/ UB 102.98 2.42 28.38 36.07

Table 4: Time spent on each part of Redis (VM+KPTI, SET).

Profiling performance gain. We let the BTC runtime profile
BTC execution and userspace execution using the RDTSCP
instruction. We run 20M Redis SET transactions (about 100
seconds) with and without UB. Table 4 shows the results. As
we can see, by elevating the fast path to BTC, 5.91s userspace
time can be saved, while the BTC only costs 2.42s. The differ-
ence (3.49s) can be attributed to the userspace IPC increase
(indirect overhead). 5.59s are saved in total (the “Redis Server”
column) and 2.1s (i.e., 5.59s - 3.49s) are saved directly by
invoking fewer syscalls.

Overhead of memory checks. When strong kernel memory
safety is unnecessary, e.g., when the binary is formally veri-
fied, a user may choose to chase higher performance gain by
removing the instructions inserted to check memory boundary
(i.e., SHL and SHR). We evaluate how much RPS gain can we
get if we ask the translator not to insert such instructions. The
results show that only 0.4% more RPS can be gained.
Comparison with DPDK. We compare the acceleration ratio
of UB on Redis with that on DPDK as there are open-source
implementations to empower Redis, like Redis-DPDK [2] and
F-Stack Redis [45]. We chose F-Stack as the maintenance of
Redis-DPDK has stopped since 2017 and it cannot run on the
latest CPUs. F-stack supports the recent Redis 6.2.6 [46] as
well as the recent DPDK 20.11. The comparison result is also
shown in Figure 7.

It turns out F-Stack provides higher acceleration ratios for
small size consistently (no larger than 4KiB). Interestingly,
we found for 16KiB, F-Stack performs worse than UB and
Redis baseline. One potential explanation is that F-Stack does
not benefit from our multi-core setting. When we measure
the CPU usage, it is always 100% for F-Stack, but UB and
baseline can go up to 124%, which means multiple cores are
used. Hence, F-Stack might outperform UB consistently when
we restrict the core number to 1.

6.3 Nginx

In addition to Redis, we use Nginx (Version 1.20.0), a popular
static web server with high RPS, as another macro-benchmark.
Table 5 shows the number of instructions in the path followed
by each syscall. These followed by less than 1,000 instruc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 43

syscall recvfrom openat fstat setsockopt writev sendfile close setsockopt
#Instructions followed 4,328 38 4,412 43 177 541 477 509

Table 5: Number of instructions following each syscall of Nginx. Those followed by less than 1,000 instructions are hot. The two
setsockopt calls are different.

tions can be regarded as hot. Therefore, 6 out of the 8 can be
accelerated. We run wrk [50] (Version 4.1.0, with 8 threads
and 1024 connections), an HTTP benchmark tool, on the
client machine to issue requests to the Nginx server for 12s
to examine how much RPS Nginx can handle.

Figure 8: RPS of Nginx against different file sizes (Bytes).

Results. We gradually increase the file size requested by wrk
and Figure 8 shows the RPS before and after UB accelera-
tion. When being tested in VM with KPTI on, Nginx can
be accelerated by 9.6%±1.81% to 10.9%±0.22% for 1KB to
64KB files, but the ratio drops to 0.4%±0.86% for 256KB
file. For physical machine, the acceleration ratio ranges from
6.3%±0.17% to 13.4%±3.32% for 1KB to 64KB files, but also
drops to −1.4%±0.28% for 256KB file. These results show the
bottleneck shifts from syscall to I/O for large files. When

turning off KPTI, UB does not yield noticeable acceleration.

Multiple worker threads. We evaluate how multi-threading
affects the acceleration ratio. We gradually increase the num-
ber of worker threads of Nginx and evaluate the case of
4KB file size. Figure 9 shows the RPS. As we can see, with
more worker threads, the acceleration ratio drops noticeably
when KPTI is on (from 8.6%±0.22% to 7.1%±0.17% for VM
and 4.7%±0.15% to 2.0%±0.26% for physical machine), as the
worker threads are increased from 2 to 8. When there are
more worker threads, more cycles are used for thread synchro-
nization, so fewer requests can be served per thread, reducing
the syscall overhead saved by UB.

Figure 9: RPS of Nginx against different # of threads.

6.4 Raw Socket vs. eBPF

To avoid the syscall overhead, eBPF is another popular so-
lution as described in Section 2.2. We show that, with the
help of UB, developers can simply write the processing logic
entirely in userspace with raw socket, and compare Packets
Per Second (PPS) with eBPF.

We run a program on the client machine to send UDP
packets to the server, and the server handles the incoming
packets by either raw socket or XDP (eBPF library for packet
processing) for 12s in each round. The client runs 15 threads,
which can saturate the server. The processing tasks include
counting the number of packets and summing packets by
treating a packet as an integer array.

Results. Figure 10 shows the results by 3 packet sizes (128B,
512B, and 1472B). For VM with KPTI on, eBPF outperforms
raw socket for small packets by up to 368.4%±8.92%. For pack-
ets of MTU size (i.e., 1472B), eBPF still has 236.7%±4.15%
more PPS. UB accelerates raw socket by 31.5%±0.25% –
34.3%±0.72%, which are much smaller than eBPF. The PPSs
for raw socket are similar across different packet sizes. How-
ever, eBPF is very sensitive to packet size, and we believe
it is because the bottleneck of raw socket is protocol stack
processing, which is bypassed by eBPF whose bottleneck may
be the data movement, whose time consumption is related
to packet size. When KPTI is off, the acceleration ratio of
UB drops to 14.5%±0.45% – 17.8%±0.44% for various packet
sizes. On physical machine, the acceleration ratios of UB

44 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: PPS of server handling incoming UDP packets in different packet sizes.

have larger ranges (30.9%±0.87% – 38.6%±0.56% for KPTI on
and 9.2%±0.14% – 19.8%±0.31% for KPTI off).

Computation. We also consider adding lightweight computa-
tion workload, i.e., packet summing, like the experiments for
NVMe file access (Section 6.1). In VM, the PPS of raw socket
sees greater drop when the packet size increases, but UB can
still accelerates raw socket in similar ratios (30.1%±0.20% –
31.8%±0.50% for KPTI on and 10.1%±0.18% – 20.1%±0.15%
for KPTI off). eBPF is able to keep the similar PPS without
packet summing. On the physical machine, similar trend is
observed for raw socket, UB, and eBPF, except that eBPF sees
considerable drop of PPS for 512B packet size and KPTI on.

Profiling execution performance. We profile the execution
time of BTC and eBPF respectively for the case of packet
summing with RDTSCP, like our experiments on Redis (Sec-
tion 6.2). In VM with KPTI on, for handling 33.85M incoming
packets of 128B, BTC spent 5.86s. In contrast, eBPF costs 9s.
As we can see, the execution performance of BTC is better
than eBPF VM. However, UB still cannot achieve similar PPS
to eBPF based on the previous results. According to our anal-
ysis, the reason is that eBPF runs in softirq, so the packets can
be dispatched into different cores. In contrast, the raw socket
protocol stack has in-kernel locks for concurrent access. In
particular, we added more threads for socket read, but did not
see PPS increase at all. We also tried to assess how eBPF
works without multi-threading, by restricting the IRQ of the
NIC to a single core and repeating the sum experiment in VM
with KPTI on. UB-accelerated socket reaches 1M, 0.96M and

0.93M PPS for the three packet sizes, while eBPF reaches
0.96M, 0.93M and 0.91M PPS respectively. Therefore, we
believe the PPS of raw socket can be significantly improved if
kernel optimizes its protocol stack for concurrent access. One
potential approach is to build a better UB runtime so more
deeper kernel trace points can be exposed via syscall, and we
leave this as a future work.

7 Discussion

7.1 UB vs. eBPF

In addition to the comparison on the performance between
UB and eBPF, here we compare their restrictions and security
guarantees. As eBPF is developed mostly for packet process-
ing and kernel tracing, it has a number of restrictions on the
application code. For example, eBPF is not Turing Complete,
as infinite loops are not allowed [33]. Due to its extensive
restrictions on code, the eBPF verifier is prone to produce
false positives, i.e., legal code regarded as illegal [14]. UB
does not add any restrictions to developers and translates the
userspace code transparently.

Regarding performance, UB only accelerates the paths fol-
lowing syscalls, but eBPF can be attached to many tracing
points inside kernel, which makes it more flexible and capa-
ble of overcoming kernel bottlenecks. We believe UB could
realize similar performance as eBPF, if kernel exposes more
tracing points via syscalls.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 45

In terms of security, eBPF relies on the isolation from in-
kernel VM, while UB relies on the policies of SFI translator.
Attacks targeting eBPF might be effective against UB as well,
as described in Section 7.2. Formally verifying the imple-
mentation of eBPF and UB could mitigate these issues, but
verifying eBPF is likely easier than UB, because eBPF has an
official specification and it uses a reduced set of instructions.

7.2 Security Risks
Though we follow the SFI principles to design UB, new secu-
rity risks could be introduced. First, UB might be vulnerable
under side-channel attacks, which infer the secrets according
to micro-architectural state changes. For instance, the Spec-
tre attack has demonstrated that eBPF can be exploited to
steal kernel memory, as eBPF VM compiles userspace code
into kernel code [25]. The BTC of UB may also be exploited
for similar attacks. To mitigate such risk, defenses against
speculation attacks should be considered, e.g., placing specu-
lation blocking instructions by the compiler [25]. Second, our
BTC translator might not be able to sanitize privileged undoc-
umented X86 instructions. To mitigate the introduced risk,
the translator could allow a whitelist of instructions. When
instructions outside the whitelist are encountered, UB should
give up elevating their fast path. Third, previous research
showed kernel races can lead to time-of-check to time-of-use
(TOCTOU) attacks [28]. Since the BTC runtime does not en-
force atomicity between the checking point and the use point
for the fast path, the malicious userspace code can exploit
kernel races. The mitigation can rely on the existing defenses
that detect kernel races actively [20].

7.3 Other Limitations
Admittedly, kernel-bypass frameworks like DPDK could
achieve better performance than UB, when the developers
take the right measures to integrate them into the userspace
applications. The better performance not only comes from
the reduction of context switching overhead, but also the sim-
plified and more efficient userspace drivers. For example,
userspace drivers could avoid unnecessary buffer copying,
interrupt, etc. In contrast, UB only reduces the context switch-
ing overhead. The key advantage of UB is that it does not
require any change on the applications by the developers (see
Table 1). Therefore, we believe kernel bypass would be fa-
vored when the developers are willing to refactor their code
or design a new application with kernel bypass in mind.

UB does not aim to replace asynchronous I/O. Admittedly,
when an application is both computation-intensive and I/O
intensive, asynchronous I/O helps the developers decouple
I/O from computation in different threads, making better use
of multi-cores. UB does not give synchronous I/O tasks more
IOPS than asynchronous tasks, but it can be used jointly with
asynchronous I/O. In some cases, the I/O threads of asyn-

chronous tasks still intensively invoke syscalls to submit I/O
and UB can accelerate these tasks.

8 Related Work

Section 2 has surveyed related works about syscall optimiza-
tion. Below we describe other related works.
Dynmaic Binary Translation (DBT). DBT is a powerful
method for debugging and instrumentation [3, 19, 22, 48]. Ke-
dia et al. proposed a fast DBT in kernel to instrument kernel
code [22]. Our translator has some similarities with theirs in
indirect branch processing, but our translator differs largely
in memory protection and register renaming. Besides, some
functionalities of their runtime require rollback. In contrast,
our runtime never rolls back.
Software-Based Fault Isolation (SFI). Enforcing SFI in ker-
nel is not an entirely new idea. XFI was firstly proposed
to isolate kernel modules with SFI, and later LXFI added
kernel API check to restrict the fault propagated via kernel
APIs [13,32]. UB uses SFI in a different way for the fast path.
Accelerating Inter-Process Communication (IPC). Some
schemes were proposed recently to exploit hardware assis-
tance to accelerate IPC. Similar to accelerating system calls,
they also try to minimize context switching overhead. Gu
et al. proposes to accelerate IPC with the help of recent inno-
vation in Intel processors, i.e., MPK [16]. Mi et al. borrows
a hardware function designed for virtualization to acceler-
ate IPC [35]. Du et al. proposes to add new features to CPU
for context switching without involving kernel [12]. They
implemented the prototype on RISC-V FPGA processors.

9 Conclusion

The overhead brought by syscalls is prominent to high-IOPS
applications, but the existing approaches have not completely
addressed this issue, because they require efforts in code
refactoring. To preserve binary compatibility, we propose
userspace bypass (UB) that executes userspace instructions
directly in kernel. UB employs a JIT translator that translates
userspace instructions between syscalls into sanitized code
blocks. The code blocks are constrained to avoid introducing
extra harm, therefore they can be executed directly in kernel.
With UB, I/O micro-benchmark can be accelerated by 30.3
– 88.3% and real-world applications like Redis can be accel-
erated by 4.4 – 10.8% for 1B – 4KiB data sizes under GET,
when the applications are executed in VM with KPTI on.

Acknowledgement

We thank our shepherd Dan Tsafrir for his highly valuable sug-
gestions. The Fudan authors are sponsored by National Key
R&D Program of China (Grant No. 2022YFB3102901) and
Natural Science Foundation of Shanghai (No. 23ZR1407100).

46 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[2] ansyun. DPDK-Redis. https://github.com/ansyu
n/dpdk-redis. Accessed: 2021-05-05.

[3] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX annual technical conference,
FREENIX Track, volume 41, page 46. Califor-nia, USA,
2005.

[4] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security, pages 30–40, 2011.

[5] Zach Brown. Asynchronous system calls. In Proceed-
ings of the Ottawa Linux Symposium (OLS), pages 81–
85, 2007.

[6] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav
Shacham. Return-oriented programming: Exploitation
without code injection. Black Hat, 8, 2008.

[7] Jeff Caruso. 1 million IOPS demonstrated.
https://www.networkworld.com/article/2
244085/1-million-iops-demonstrated.html.
Accessed: 2021-12-01.

[8] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
CCS ’10, page 559–572, New York, NY, USA, 2010.
Association for Computing Machinery.

[9] Vitaly Chipounov and George Candea. Dynamically
translating x86 to LLVM using QEMU. Technical report,
EPFL, 2010.

[10] Alibaba Cloud. Improving Redis performance through
multi-thread processing. https://alibaba-cloud.m
edium.com/improving-redis-performance-thr
ough-multi-thread-processing-ca4d8353523f.
Accessed: 2020-11-30.

[11] DPDK. Data Plane Development Kit. https://www.
dpdk.org/. Accessed: 2021-05-01.

[12] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: architectural support for secure and

efficient cross process call. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture, pages
671–684, 2019.

[13] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C Necula. XFI: Software guards for
system address spaces. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,
pages 75–88, 2006.

[14] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted Linux kernel extensions. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1069–1084, 2019.

[15] GlareR. Code repository of this project. https://gith
ub.com/GlareR/UserspaceBypass. Accessed: 2022-
09-25.

[16] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi,
Yubin Xia, and Haibo Chen. Harmonizing performance
and isolation in microkernels with efficient intra-kernel
isolation and communication. In 2020 USENIX Annual
Technical Conference (USENIXATC 20), pages 401–417,
2020.

[17] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-
Min Wang, and Yeh-Ching Chung. HQEMU: a multi-
threaded and retargetable dynamic binary translator
on multicores. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, pages 104–113, 2012.

[18] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim,
Hanadi Hussein, and Ahmed Fahmy. An analysis of
x86-64 instruction set for optimization of system soft-
wares. Planning perspectives, page 152, 2011.

[19] Andrew Jeffery. Using the LLVM compiler infrastruc-
ture for optimised, asynchronous dynamic translation in
QEMU. University of Adelaide Honors Thesis, 2009.

[20] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, By-
oungyoung Lee, and Insik Shin. Razzer: Finding kernel
race bugs through fuzzing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 754–768. IEEE, 2019.

[21] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a highly scalable user-level TCP
stack for multicore systems. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 489–502, 2014.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 47

https://github.com/ansyun/dpdk-redis
https://github.com/ansyun/dpdk-redis
https://www.networkworld.com/article/2244085/1-million-iops-demonstrated.html
https://www.networkworld.com/article/2244085/1-million-iops-demonstrated.html
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://www.dpdk.org/
https://www.dpdk.org/
https://github.com/GlareR/UserspaceBypass
https://github.com/GlareR/UserspaceBypass

[22] Piyus Kedia and Sorav Bansal. Fast dynamic binary
translation for the kernel. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, pages 101–115, 2013.

[23] Kernel.dk. Efficient IO with io_uring. https://kern
el.dk/io_uring.pdf. Accessed: 2021-12-01.

[24] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo
Kim. Nvmedirect: A user-space I/O framework for
application-specific optimization on NVMe SSDs. In
8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), 2016.

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19. IEEE, 2019.

[26] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and
Sibin Mohan. A Linux in unikernel clothing. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[27] Dmitry Kuznetsov and Adam Morrison. Privbox: Faster
system calls through sandboxed privileged execution. In
2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022.

[28] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: Exploiting kernel races through raising inter-
rupts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2363–2380, 2021.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), pages 973–990, 2018.

[30] Zhiyun Luo. How does Redis process requests? (trans-
lated). https://www.luozhiyun.com/archives/6
74. Accessed: 2022-09-25.

[31] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-
sos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. ACM
SIGARCH Computer Architecture News, 41(1):461–472,
2013.

[32] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M Frans Kaashoek. Software

fault isolation with api integrity and multi-principal mod-
ules. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pages 115–128,
2011.

[33] Andrea Mayer, Pierpaolo Loreti, Lorenzo Bracciale,
Paolo Lungaroni, Stefano Salsano, and Clarence Filsfils.
Performance monitoring with H^2: Hybrid kernel/eBPF
data plane for SRv6 based hybrid SDN. Computer Net-
works, 185:107705, 2021.

[34] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, 1993.

[35] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[36] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo
Min, and Binoy Ravindran. A binary-compatible uniker-
nel. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, pages 59–73, 2019.

[37] M. Prandini and M. Ramilli. Return-oriented program-
ming. IEEE Security and Privacy, 10(6):84–87, 2012.

[38] Mohan Rajagopalan, Saumya K Debray, Matti A
Hiltunen, and Richard D Schlichting. Cassyopia: Com-
piler assisted system optimization. In HotOS, volume 3,
pages 1–5, 2003.

[39] Redis. Redis Benchmark. https://redis.io/docs/
reference/optimization/benchmarks/. Accessed:
2022-09-25.

[40] Vasily A Sartakov, Lluís Vilanova, and Peter Pietzuch.
Cubicleos: a library OS with software componentisation
for practical isolation. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
546–558, 2021.

[41] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit object-oriented programming: On the dif-
ficulty of preventing code reuse attacks in C++ appli-
cations. In 2015 IEEE Symposium on Security and
Privacy, pages 745–762. IEEE, 2015.

[42] Amol Shukla, Lily Li, Anand Subramanian, Paul AS
Ward, and Tim Brecht. Evaluating the performance of
user-space and kernel-space web servers. In CASCON,
volume 4, pages 189–201, 2004.

48 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://www.luozhiyun.com/archives/674
https://www.luozhiyun.com/archives/674
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/

[43] Livio Soares and Michael Stumm. FlexSC: Flexible
system call scheduling with exception-less system calls.
In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10,
page 33–46, USA, 2010. USENIX Association.

[44] Gang Tan. Principles and implementation techniques of
software-based fault isolation. Now Publishers, 2017.

[45] Tencent. F-Stack. https://github.com/F-Stack/f
-stack. Accessed: 2022-09-25.

[46] Tencent. F-Stack Redis. https://github.com/F
-Stack/f-stack/tree/dev/app/redis-6.2.6. Ac-
cessed: 2022-09-25.

[47] The kernel development community. Page table isola-
tion (PTI). https://www.kernel.org/doc/html/la
test/x86/pti.html. Accessed: 2021-12-01.

[48] Nigel Topham and Daniel Jones. High speed CPU simu-
lation using JIT binary translation. In Workshop on Mod-
eling, Benchmarking and Simulation (MOBS), 2007.

[49] Stephan Van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-
flight data load. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105. IEEE, 2019.

[50] wg. wrk. https://github.com/wg/wrk. Accessed:
2020-12-15.

[51] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. SPDK:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[52] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages
79–93. IEEE, 2009.

[53] Kai Yu, Chengfei Zhang, and Yunxiang Zhao. Web ser-
vice appliance based on unikernel. In 2017 IEEE 37th
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 280–282. IEEE,
2017.

A Artifact Appendix

Abstract
Our artifact includes the source code of UB, and the apps we
used for evaluation. The readers can follow the instructions
to modify the Linux kernel to support UB, compile UB to run
on it, and evaluate the apps on it.

Scope
The IOPS of all the apps we evaluated can be reproduced.
Specifically, Figure 5, Figure 7, 8, 9 and 10. Reproducing
the I/O benchmark is the most convenient case. Therefore, it
is recommended to start from Figure 5.

The whole experiment can be time-consuming, so people
may take fewer repeat rounds to save time.

Content
The artifact includes the implementation of UB, which con-
sists of the three files to be modified over Linux Kernel
(zz_lkm, zz_daemon, and zz_disassem). zz_lkm is the kernel
part of UB, which profiles processes and executes the BTC.
zz_daemon sits at userspace to communicate with the kernel
module and invoke zz_disassem to do the actual translation.

Hosting
The source codes are hosted at https://github.com/gla
rer/UserspaceBypass, as well as the readme file.

Requirement
The I/O benchmark experiment requires only a server ma-
chine. Because Redis, Nginx, and raw socket experiments
involve network, another client machine is required to be
connected to the server.

The IOPS is highly related to CPU performance. Therefore,
the reproduced IOPS values may be different by different
CPUs, but we can always see the performance gain.

The IOPS can also be disturbed by network performance.
If the NIC used is not sufficiently powerful, the IOPS may
drop for large I/O size, as well as the performance gain.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 49

https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack/tree/dev/app/redis-6.2.6
https://github.com/F-Stack/f-stack/tree/dev/app/redis-6.2.6
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://github.com/wg/wrk
https://github.com/glarer/UserspaceBypass
https://github.com/glarer/UserspaceBypass

	Introduction
	Background
	Syscalls and Their Costs
	Performance Optimization on Syscalls

	Design Overview
	Syscall-intensive Applications
	UB Modules

	Hot Syscall Identifier
	BTC Runtime and Translator
	BTC Runtime
	BTC Translator
	Jump Sanitation
	Register Remapping
	Instruction Sanitization
	Memory Access Sanitization

	Security Guarantees
	Thread Safety

	Evaluation
	I/O Micro-benchmark
	Redis
	Nginx
	Raw Socket vs. eBPF

	Discussion
	UB vs. eBPF
	Security Risks
	Other Limitations

	Related Work
	Conclusion
	Artifact Appendix

