Representative publications
Submitted papers
Publications by topic
- Bayes
- Decision making
- Memory and clinical
- Wisdom of the crowd
- Representation
- Perception and data visualization
- Problem solving
- Commentaries and other
Full publication list
- Lee, M.D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. [Book Website] [Google Books] [Amazon US] [Amazon UK] [Cambridge University Press].
- Lee, M.D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.) The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Volume 5: Methodology (Fourth Edition). John Wiley & Sons. [pdf] [osf]
- Lee, M.D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. Psychonomic Bulletin & Review, 25, 114-127. [pdf]
- Villarreal, M., Etz, A., & Lee, M.D. (2023). Evaluating the complexity and falsifiability of psychological models. Psychological Review, 130, 853-872. [pdf]
- Lee, M.D., & Sarnecka, B.W. (2011). Number knower-levels in young children: Insights from a Bayesian model. Cognition, 120, 391-402. [doi] [supplementary note]
- Lee, M.D. (2015). Evidence for and against a simple interpretation of the less-is-more effect. Judgment and Decision Making, 10, 18-33. [pdf] [data and code] [link]
- Lee, M.D., Gluck, K.A., & Walsh, M.M. (2019). Understanding the complexity of simple decisions: Modeling multiple behaviors and switching strategies. Decision, 6, 335-368. [pdf] [osf]
- Lee, M.D., Bock, J.R., Cushman, I., & Shankle, W.R. (2020). An application of multinomial processing tree models and Bayesian methods to understanding memory impairment. Journal of Mathematical Psychology, 95, 102328. [pdf]
- Westfall, H.A., & Lee, M.D. (2021). A model-based analysis of the impairment of semantic memory. Psychonomic Bulletin & Review, 28, 1484-1494. [pdf]
- Lee, M.D. (2024). Using cognitive models to improve the wisdom of the crowd. Current Directions in Psychological Science. Accepted 5-Jun-2024. [pdf]
Submitted Papers
Bayes
- Lee, M.D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. [Book Website] [Google Books] [Amazon US] [Amazon UK] [Cambridge University Press]. You can download drafts of the first two parts of the book, the associated code, and some draft answers.
- Lee, M.D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Volume 5: Methodology (Fourth Edition). John Wiley & Sons. [pdf] [osf]
- Lee, M.D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. Psychonomic Bulletin & Review, 25, 114-127. [pdf]
- Banavar, N.V., Lee, M.D., & Bornstein, A.M. (2021). Sequential effects in non-sequential tasks. In T. Stewart (Ed.), Proceedings of the 19th International Conference on Cognitive Modeling. [pdf]
- Villarreal, M., Velázquez, C. A., Baroja, J. L., Segura, A., Bouzas, A., & Lee, M.D. (2019). Bayesian methods applied to the generalized matching law. Journal of the Experimental Analysis of Behavior, 111, 252-273. [pdf] [osf]
- Steingroever, H., Jepma, M., Lee, M.D., Jansen, B.R.J., & Huizenga, H.M. (2019). Modeling decision strategies in the developmental sciences. Computational Brain & Behavior, 2, 128-140. [osf] [link]
- Mistry, P., & Lee, M.D. (2019). Violence in the intifada: A demonstration of Bayesian generative cognitive modeling. Advances in Econometrics, 40, 65-90. [pdf] [osf]
- Lee, M.D. (2018). Bayesian methods for analyzing true-and-error models. Judgment and Decision Making, 13, 622-635. [pdf] [osf]
- Steingroever, H., Pachur, T., Smira, M., & Lee, M.D. (2018). Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision makers. Psychonomic Bulletin & Review, 25, 951–970. [pdf] [supplement]
- Danileiko, I., & Lee, M.D. (2016). Inferring individual differences between and within exemplar and decision-bound models of categorization. In J. Trueswell, A. Papafragou, D. Grodner, & D. Mirman (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society, pp. 2825-2830. Austin, TX: Cognitive Science Society. [pdf] [osf]
- Danileiko, I., Lee, M.D., & Kalish, M.L. (2015). A Bayesian latent mixture approach to modeling individual differences in categorization using General Recognition Theory. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 501-506. Austin, TX: Cognitive Science Society. [pdf] [supplement]
- Bartlema, A., Lee, M.D., Wetzels, R., & Vanpaemel, W. (2014). A Bayesian hierarchical mixture approach to individual differences: Case studies in selective attention and representation in category learning. Journal of Mathematical Psychology, 59, 132-150. [pdf] [code]
- van Ravenzwaaij, D., Moore, C.P., Lee, M.D., & Newell, B.R. (2014). A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment. Cognitive Science, 38, 1384–1405. [pdf]
- Asher, D., Zhang, S., Zaldivar, A., Lee, M.D., & Krichmar, J. (2012). Modeling individual differences in socioeconomic game playing. In N. Miyake, D. Peebles, & R. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society, pp. 90-95. Austin, TX: Cognitive Science Society. [pdf]
- Vanpaemel, W., & Lee, M.D. (2012). Using priors to formalize theory: Optimal attention and the Generalized Context Model. Psychonomic Bulletin & Review, 19, 1047-1056. [pdf]
- Vanpaemel, W., & Lee, M.D. (2012). The Bayesian evaluation of categorization models: Comment on Wills and Pothos (2012). Psychological Bulletin, 138, 1253-1258. [pdf]
- Lee, M.D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55, 1-7. [pdf]
- Lee, M.D., & Newell, B.R. (2011). Using hierarchical Bayesian methods to examine the tools of decision making. Judgment and Decision Making, 6, 832-842. [pdf] [code]
- Zeigenfuse, M.D., & Lee, M.D. (2010). A general latent-assignment approach for modeling psychological contaminants. Journal of Mathematical Psychology, 54, 352-362. [pdf]
- Lee, M.D., & Wetzels, R. (2010). Individual differences in attention during category learning. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 387-392. Austin, TX: Cognitive Science Society. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2009). Bayesian nonparametric modeling of individual differences: A case study using decision making on bandit problems. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1412-1415. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Vanpaemel, W. (2008). Exemplars, prototypes, similarities and rules in category representation: An example of hierarchical Bayesian analysis. Cognitive Science, 32, 1403-1424. [pdf]
- Lee, M.D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1-15. [pdf]
- Shiffrin, R.M., Lee, M.D., Wagenmakers, E.-J., & Kim, W.J. (2008). A survey of model evaluation approaches with a focus on hierarchical Bayesian methods. Cognitive Science, 32, 1248-1284. [pdf]
- Navarro, D.J., Griffiths, T.L., Steyvers, M., & Lee, M.D. (2006). Modeling individual differences with Dirichlet processes. Journal of Mathematical Psychology, 50, 101-102. [pdf]
- Lee, M.D., & Webb, M.R. (2005). Modeling individual differences in cognition. Psychonomic Bulletin & Review, 12, 605-621. [pdf]
- Navarro, D.J., Griffiths, T.L., Steyvers, M., & Lee, M.D. (2005). Modeling individual differences with Dirichlet processes In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1594-1599. Mahwah, NJ: Erlbaum. [pdf]
- Villarreal, M., Etz, A., & Lee, M.D. (2023). Evaluating the complexity and falsifiability of psychological models. Psychological Review, 130, 853-872. [pdf]
- Lee, M.D., & Wagenmakers, E.-J. (2005). Bayesian statistical inference in psychology: Comment on Trafimow (2003). Psychological Review, 112, 662-668. [pdf]
- Morey, R.D., Hoekstra, R., Rouder, J.N., Lee, M.D.., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23, 103-123. [pdf]
- Heck, D., Boehm, U., Böing-Messing, F., Bürkner, P., Derks, K., Dienes, Z., … Hoijtink, H. (2022). A review of applications of the Bayes factor in psychological research. Psychological Methods. Accepted 27-Sep-2021. [pdf] [osf]
- van Doorn, J., Westfall, H.A., & Lee, M.D. (2021). Using the weighted Kendall’s distance to analyze rank data in psychology. The Quantitative Methods for Psychology, 17, 154-165. [pdf] [osf]
- Aczel, B., Hoekstra, R., Gelman, A., Wagenmakers, E.-J., Kluglist, I. G., Rouder, J. N., Vandekerckhove, J., Lee, M.D., Morey, R.D., Vanpaemel, W., Dienes, Z., & van Ravenzwaaij, D. (2020). Discussion points for Bayesian inference. Nature Human Behavior. https://doi.org/10.1038/s41562-019-0807-z. [osf] [sharedIt]
- Wagenmakers, E.-J., Lee, M.D., Rouder, J.N., & Morey, R.D. (2020). The principle of predictive irrelevance, or why intervals should not be used for model comparison featuring a point null hypothesis. In C. Gruber (Ed.), The Theory of Statistics in Psychology — Applications, Use and Misunderstandings, pp. 111-119. New York: Springer. [osf]
- Matzke, D., Ly, A., Selker, R., Weeda, W.D., Scheibehenne, B., Lee, M.D., & Wagenmakers, E.-J. (2017). Bayesian inference for correlations in the presence of measurement error and estimation uncertainty. Collabra: Psychology, 3, 25. [link]
- Wagenmakers, E.-J., Morey, R.D., & Lee, M.D. (2016). Bayesian benefits for the pragmatic researcher. Current Directions in Psychological Science, 25, 169-176. [pdf] [osf]
- Wagenmakers, E.-J., Verhagen, A.J., Ly, A., Bakker, M., Lee, M.D., Matzke, D., Rouder, J.N., & Morey, R.D. (2015). A power fallacy. Behavior Research Methods, 47, 913-917 [pdf]
- Wetzels, R., Matzke, D., Lee, M.D., Rouder, J.N., Iverson, G.J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t-tests. Perspectives in Psychological Science, 6, 291-298. [pdf]
- Iverson, G.J, Lee, M.D., & Wagenmakers, E.-J. (2010). The random-effects prep continues to mispredict the probability of replication. Psychonomic Bulletin & Review, 17, 270-272. [pdf] Accompanying technical note [pdf]
- Iverson, G.J., Wagenmakers, E.-J., & Lee, M. D. (2010). A model averaging approach to replication: The case of prep. Psychological Methods, 15, 172-181. [pdf]
- Iverson, G.J., Lee, M.D., Zhang, S., & Wagenmakers, E.-J. (2009). prep: An agony in five fits. Journal of Mathematical Psychology, 53, 195-202. [pdf]
- Iverson, G.J., Lee, M.D., & Wagenmakers, E.-J. (2009). prep misestimates the probability of replication. Psychonomic Bulletin & Review, 16, 424-429. [pdf]
- Wagenmakers, E.-J., Lee, M.D., Lodewyckx, T., & Iverson, G. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, and P. Boelen (Eds.), Practical Evaluation of Informative Hypotheses, pp. 181-207. Springer: New York. [pdf]
- Lee, M.D., & Pope, K.J. (2006). Model selection for the rate problem: A comparison of significance testing, Bayesian, and minimum description length statistical inference. Journal of Mathematical Psychology, 50, 193-202. [pdf]
- Villarreal, M., Stark, C.E.L., & Lee, M.D. (2022). Adaptive design optimization for a Mnemonic Similarity Task. Journal of Mathematical Psychology, 108, 102665. [pdf] [git]
- Coon, J., & Lee, M.D. (2022). A Bayesian method for measuring risk propensity in the Balloon Analogue Risk Task. Behavior Research Method, 54, 1010-1026. [pdf] [sharedIt] [osf]
- Lee, M.D. (2019). A simple and flexible Bayesian method for inferring step changes in cognition. Behavior Research Methods, 51, 948-960. [pdf] [osf]
- Lee, M.D. (2016). Bayesian outcome-based strategy classification. Behavior Research Methods, 48, 29-41. [pdf] [osf]
- Lodewyckx, T., Kim, W.-J., Lee, M.D., Tuerlinckx, F., Kuppens, P., & Wagenmakers, E.-J. (2011). A tutorial on Bayes Factor estimation with the product space method. Journal of Mathematical Psychology, 55, 331-347. [pdf]
- Zhang, S., & Lee, M.D. (2010). Optimal experimental design for a class of bandit problems. Journal of Mathematical Psychology, 54, 499-508. [pdf]
- Wetzels, R., Lee, M.D., & Wagenmakers, E.-J. (2010). Bayesian inference using WBDev: A tutorial for social scientists. Behavior Research Methods, 42, 884-897. [pdf]
- Welsh, M.B., Lee, M.D., & Begg, S.H. (2009). Repeated judgments in elicitation tasks: Efficacy of the MOLE method. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1529-1534 Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D. (2008). BayesSDT: Software for Bayesian inference with signal detection theory. Behavior Research Methods, 40, 450-456. [pdf]
- Welsh, M.B., Lee, M.D., & Begg, S.H. (2008). More-Or-Less Elicitation (MOLE): Testing a heuristic elicitation model. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 493-498. Austin, TX: Cognitive Science Society. [pdf]
Decision making
- Lee, M.D., Gluck, K.A., & Walsh, M.M. (2019). Understanding the complexity of simple decisions: Modeling multiple behaviors and switching strategies. Decision, 6, 335-368. [pdf] [osf]
- Lee, M.D., & Gluck, K.A. (2021). Modeling strategy switches in multi-attribute decision making. Computational Brain & Behavior, 4, 148-163. [pdf] [sharedIt] [git]
- Lee, M.D., Doering, S., & Carr. A. (2019). A model for understanding recognition validity. Computational Brain & Behavior, 2, 49-63. [pdf] [osf] [link]
- Mistry, P.K., Lee, M.D., & Newell, B.R. (2016). An empirical evaluation of models for how people learn cue search orders. In J. Trueswell, A. Papafragou, D. Grodner, & D. Mirman (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society, pp. 211-216. Austin, TX: Cognitive Science Society. [pdf] [osf]
- Lee, M.D., Blanco, G., & Bo, N. (2016). Testing take-the-best in new and changing environments. Behavior Research Methods, 49, 1420-1431. [pdf] [osf]
- Lee, M.D. (2015). Evidence for and against a simple interpretation of the less-is-more effect. Judgment and Decision Making, 10, 18-33. [pdf] [data and code] [link]
- van Ravenzwaaij, D., Newell, B.R., Moore, C.P., & Lee, M.D. (2013). Using recognition in multi-attribute decision environments. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society, pp. 3627-3632. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Zhang, S. (2012). Evaluating the process coherence of take-the-best in structured environments. Judgment and Decision Making, 7, 360-372. [link]
- Newell, B.R., & Lee, M.D. (2011). The right tool for the job? Comparing an evidence accumulation and a naive strategy selection model of decision making. Journal of Behavioral Decision Making, 24, 456-481. [pdf]
- Pachur, T., Raaijmakers, J. G. W., Davelaar, E. J., Daw, N. D., Dougherty, M. R., Hommel, B., Lee, M. D., Polyn, S. M., Ridderinkhof, K. R., Todd, P. M., & Wolfe, J. M. (2012). Unpacking cognitive search: Mechanisms and processes. In: P. M. Todd, T. T. Hills, & T. W. Robbins (eds.), Cognitive search: Evolution, algorithms, and the brain. Strüngmann Forum Reports, Vol. 9. Cambridge, MA: MIT Press. [pdf]
- Lee, M.D., & Cummins, T.D.R. (2004). Evidence accumulation in decision making: Unifying the ‘take the best’ and ‘rational’ models. Psychonomic Bulletin & Review, 11, 343-352. [pdf] [data]
- Lee, M.D., Loughlin, N., & Lundberg, I.B. (2002). Applying one reason decision making: The prioritization of literature searches. Australian Journal of Psychology, 54, 137-143. [pdf] Reprinted in G. Gigerenzer, R. Hertwig, and T. Pachur (Eds.), Heuristics: The Foundations of Adaptive Behavior. Oxford University Press.)
- Lee, M.D., Chandrasena, L.H., & Navarro, D.J. (2002). Using cognitive decision models to prioritize e-mails. In W.G. Gray & C. D. Schunn, (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society, pp. 478-483. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., & Chong, S. (in press). Strategies people use buying airline tickets: A cognitive modeling analysis of optimal stopping in a changing environment. Experimental Economics. Accepted 27-May-204. [pdf]
- Lee, M.D., & Liu, S. (2022). Drafting strategies in fantasy football: A study of competitive sequential human decision making. Judgment and Decision Making, 17, 691-719. [pdf]
- Lee, M.D., & Courey, K.A. (2021). Modeling optimal stopping in changing environments: A case study in mate selection. Computational Brain & Behavior, 4, 1-17. [pdf] [link] [sharedIt] [git]
- Guan, H., Stokes, R., Vandekerckhove, J., & Lee, M. D. (2020). A cognitive modeling analysis of risk in sequential choice tasks. Judgment and Decision Making, 15, 823-850. [pdf] [link] [osf]
- Okada, K., Vandekerckhove, J. & Lee, M.D. (2018). Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions. Behavior Research Methods, 50, 406-415. [pdf] [osf]
- Guan, H., & Lee, M.D. (2018). The effect of goals and environments on human performance in optimal stopping problems. Decision, 5, 339-361. [pdf]
- Guan, H,. Lee, M.D., & Vandekerckhove, J. (2015). A hierarchical cognitive threshold model of human decision making on different length optimal stopping problems. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 824-829. Austin, TX: Cognitive Science Society. [pdf] [supplement]
- Guan, H., Lee, M.D., & Silva, A. (2014). Threshold models of human decision making on optimal stopping problems in different environments. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society, pp. 553-558. Austin, TX: Cognitive Science Society. [pdf] [data]
- Lee, M.D., Zhang, S., Munro, M.N., & Steyvers, M. (2011). Psychological models of human and optimal performance on bandit problems. Cognitive Systems Research, 12, 164-174. [pdf] [data]
- Steyvers, M., Lee, M.D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of human decision- making on bandit problems. Journal of Mathematical Psychology, 53, 168-179. [pdf]
- Zhang, S., Lee, M.D., & Munro. M.N. (2009). Human and optimal exploration and exploitation in bandit problems. In A. Howes, D. Peebles, & R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Lee, M.D., Zhang, S., Munro. M.N., & Steyvers, M. (2009). Using heuristic models to understand human and optimal decision making on bandit problems. In A. Howes, D. Peebles, R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Yi, S.K.M., Steyvers, M., & Lee, M.D. (2009). Modeling human performance in restless bandits using particle filters. Journal of Problem Solving, 2, 33-53. [pdf]
- Lee, M.D. (2006). A hierarchical Bayesian model of human decision making on an optimal stopping problem. Cognitive Science, 30, 555-580. [pdf]
- Campbell, J., & Lee, M.D. (2006). The effect of feedback and financial reward on human performance solving ‘secretary’ problems. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society, pp. 1068-1073. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., O’Connor, T.A., & Welsh, M.B. (2004). Decision making on the full-information secretary problem. In K. Forbus, D. Gentner & T. Regier, (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society, pp. 819-824. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., & Corlett, E.Y. (2003). Sequential sampling models of human text classification. Cognitive Science, 27, 159-193. [pdf]
- Lee, M.D., & Dry, M.J. (2006). Decision making and confidence given uncertain advice. Cognitive Science. 30, 1081-1095. [pdf]
- Villarreal, M., Chávez De la Peña, A.F., Mistry, P.K., Menon, V., Vandekerckhove, J., & Lee, M.D. (in press). Bayesian graphical modeling with the circular drift diffusion model. Computational Brain & Behavior. Accepted 3-Nov-2023. [pdf]
- Zhang, S., Lee. M.D., Vandekerckhove, J., Maris, G., and Wagenmakers, E.-J. (2014). Time-varying boundaries for diffusion models of decision making and response time. Frontiers in Psychology, Quantitative Psychology and Measurement, 5, 1-11. [pdf] [link]
- Lee, M.D., Newell, B.R., & Vandekerckhove, J. (2014). Modeling the adaptation of search termination in human decision making. Decision, 1, 223-251. [pdf]
- Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44-62. [pdf]
- Newell, B.R., & Lee, M.D. (2009). Learning to adapt evidence thresholds in decision making. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 473-478. Austin, TX: Cognitive Science Society. [pdf]
- Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2008). A Bayesian approach to diffusion process models of decision making. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1429-1434. Austin, TX: Cognitive Science Society. [pdf]
- Newell, B.R., Collins, P., & Lee, M.D. (2007). Adjusting the spanner: Testing an evidence accumulation model of decision making. In D. McNamara and G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 535-538. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Fuss, I.G, & Navarro, D.J. (2006). A Bayesian approach to diffusion models of decision making and response time. In B. Schölkopf, J.C. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19, pp. 809-815. Cambridge, MA: MIT Press. [pdf]
- Lee, M.D. (2001). Fast text classification using sequential sampling processes. In M. Stumptner, D. Corbett, and M. Brooks (Eds.), AI 2001: Advances in Artificial Intelligence, Springer-Verlag Lecture Notes on Artificial Intelligence, 2256, pp. 309-320. Berlin: Springer-Verlag. [pdf]
- Vickers, D., & Lee, M.D. (2000). Dynamic models of simple judgments: II. Properties of a Parallel, Adaptive, Generalised Accumulator Network (PAGAN) model for multi-choice tasks. Non-linear Dynamics, Psychology, and Life Sciences, 4, 1-31. [pdf]
- Vickers, D., & Lee, M.D. (1998). Dynamic models of simple judgments: I. Properties of a self-regulating accumulator module. Non-linear Dynamics, Psychology, and Life Sciences, 2, 169-194. [pdf]
Categorization, context, and generalization
- Lee, M.D., & Navarro, D.J. (2002). Extending the ALCOVE model of category learning to featural stimulus domains. Psychonomic Bulletin & Review, 9, 43-58. [pdf]
- Mehlhorn, K., Newell, B.R., Todd, P.M., Lee, M.D., Morgan, K. Braithwaite, V.A., Hausmann, D., Fielder, K., & Gonzalez, C. (2015). Beyond the exploration-exploitation tradeoff: A synthesis of human and animal literatures. Decision, 2, 191-215. [pdf]
- Villarreal, M., & Lee, M. D. (in press). A Coupled Hidden Markov Model framework for measuring the dynamics of categorization. Journal of Mathematical Psychology. Accepted 15-Sep-2024. [pdf] [psyarxiv]
- Lee, M.D., & Ke, M.Y. (in press). Modeling individual differences in beliefs and opinions using Thurstonian models. In J. Musolino, P. Hemmer, & J. Sommer (Eds.), The Science of Beliefs. Cambridge University Press. [pdf] [osf]
- Villarreal, M., Vaday, S., & Lee, M.D. (in press). Categorization in environments that change when people learn. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Ke, M.Y. (2022). Framing effects and preference reversals in crowd-sourced ranked opinions. Decision, 9, 153-171. [pdf]
- Courey, K.A., & Lee, M.D. (2021). A model-based examination of scale effects in student evaluations of teaching. AERA Open, 7, 1-13. [pdf] [osf]
- Hayes, B.K., Stephens, R.G., Lee, M.D., Dunn, J.C., Kaluve, A., Choi-Christou, J., & Cruz, N. (2022). Always look on the bright side of logic? Testing explanations of intuitive sensitivity to logic in perceptual tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition. [pdf]
- Navarro, D.J., Dry, M.J., & Lee, M.D. (2012). Sampling assumptions in inductive generalization. Cognitive Science, 36, 187-223. [pdf] [data]
- Navarro, D.J, Lee, M.D., Dry, M.J, & Schultz, B. (2008). Extending and testing the Bayesian theory of generalization. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1746-1751. Austin, TX: Cognitive Science Society. [pdf]
- Vanpaemel, W., & Lee, M.D. (2007). A model of building representations for category learning. In D. McNamara and G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 1605-1610. Austin, TX: Cognitive Science Society. [pdf]
- Mackie, S.I., Welsh, M.B., & Lee, M.D. (2006). An oil and gas decision-making taxonomy. SPE paper 100699 in Proceedings of the 2006 SPE Asia Pacific Oil and Gas Conference and Exhibition. Adelaide, Australia: SPE. [pdf]
- Webb, M.R., & Lee, M.D. (2004). Modeling individual differences in category learning. In K. Forbus, D. Gentner & T. Regier, (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society, pp. 1440-1445. Mahwah, NJ: Erlbaum. [pdf]
- Welsh, M.B., Begg, S.H., Bratvold, R.B., & Lee, M.D. (2004). Problems with the elicitation of uncertainty. SPE paper 90338 in Proceedings of the 80th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Richardson, TX: SPE.
Memory and clinical
- Westfall, H.A., & Lee, M.D. (2021). A model-based analysis of the impairment of semantic memory. Psychonomic Bulletin & Review, 28, 1484-1494. [pdf]
- Lee, M.D., Bock, J.R., Cushman, I., & Shankle, W.R. (2020). An application of multinomial processing tree models and Bayesian methods to understanding memory impairment. Journal of Mathematical Psychology, 95, 102328. [pdf]
- Westfall, H. A., & Lee, M.D. (in press). An extension and clinical application of the SIMPLE model to the free recall of repeated and semantically-related items. Computational Brain & Behavior. Accepted 16 Aug 2023. [pdf]
- Vanderlip, C., Lee, M.D., & Stark, C.E.L. (in press). Cognitive modeling of the Mnemonic Similarity Task as a digital biomarker for Alzheimer’s Disease. Alzheimer’s & Dementia. Accepted 10-Jul-2024. [bioRxiv]
- Brendler, A., Schneider, M., Elbau, I.G., Sun, R., Nantawisarakul, T., Pöhlchen, D., Brückl, T., BeCOME Working Group, Czisch, M., Sämann, P.G., Lee, M.D., & Spoormaker, V.J. (2024). Assessing hypo‑arousal during reward anticipation with pupillometry in patients with major depressive disorder: replication and correlations with anhedonia. Scientific Reports, 13, 344. [pdf] [doi]
- Chwiesko, C., Janecek, J., Doering, S., Hollearn, M., McMillan, L., Vandekerckhove, J., Lee, M.D., Ratcliff, R., & Yassa, M.A. (in press). Parsing memory and non-memory contributions to age-related declines in mnemonic discrimination performance: A hierarchical Bayesian diffusion decision modeling approach. Learning and Memory.
- Lee, M.D., & Stark, C.E.L. (in press). Bayesian modeling of the Mnemonic Similarity Task using multinomial processing trees. Behaviormetrika. Accepted 30-Dec-2022. [pdf]
- Westfall, H.A., & Lee, M.D. (in press). A model of free recall for multiple encounters of semantically-related stimuli with an application to understanding cognitive impairment. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Matsumoto, N., Kobayashi, M., Takano, K., & Lee, M.D. (2022). Autobiographical memory specificity and mnemonic discrimination. Journal of Memory and Language, 127, 104366. [pdf] [osf]
- Lee, M.D., Mistry, P.K., & Menon, V. (2022). A multinomial processing tree model of the 2-back working memory task. Computational Brain & Behavior. Accepted 7-May-2022. [pdf] [osf]
- Westfall, H.A., & Lee, M.D. (2021). A model-based analysis of changes in the semantic structure of free recall due to cognitive impairment. In T. Fitch, C. Lamm, H. Leder, & K. Teßmar-Raible (Eds.), Proceedings of the 43rd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Schneider, M., Elbau, I.G., Nantawisarakul, T., Pöhlchen, D., Brückl, T., BeCOME working group, Czisch, M., Saemann P.G., Lee, M.D., Binder, E.B., & Spoormaker V. (2020). Reduced arousal during reward anticipation in unmedicated depressed patients. Brain Sciences, 10, 906. [pdf] [medrxiv]
- Mistry, P.K., Skewes, J., & Lee, M.D. (2018). An adaptive signal detection model applied to understanding autism spectrum disorder. In C. Kalish, M. Rau, J. Zhu, & T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society, pp. 774-779. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Abramyan, M., & Shankle. W.R. (2016). New methods, measures, and models for analyzing memory impairment using triadic comparisons. Behavior Research Methods, 48, 1492-1507. [pdf]
- Lee, M.D., Lodewyckx, T., & Wagenmakers, E.-J. (2015). Three Bayesian analyses of memory deficits in patients with dissociative identity disorder. In J. R. Raaijmakers, A. Criss, R. Goldstone, R. Nosofsky, & M. Steyvers (Eds.), Cognitive modeling in perception and memory: A festschrift for Richard M. Shiffrin, pp. 189-200. Psychology Press. [pdf]
- Lee, M.D., Liu, E.C., & Steyvers, M. (2015). The roles of knowledge and memory in generating top-10 lists. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 1267-1272. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Pooley. J.P. (2013). Correcting the SIMPLE model of free recall. Psychological Review, 120, 293-296. [pdf]
- Shankle, W.R., Hara, J., Mangrola, T., Hendrix, S., Alva, G., & Lee, M.D. (2013). Hierarchical Bayesian cognitive processing models to analyze clinical trial data. Alzheimer’s & Dementia, 9, 422-428. [pdf]
- Shankle, W.R., Pooley, J.P., Steyvers, M., Hara. J., Mangrola, T., Reisberg, B., & Lee, M.D. (2013). Relating memory to functional capacity in normal aging to dementia using hierarchical Bayesian cognitive processing models. Alzheimer Disease & Associated Disorders, 27, 16-22. [pdf]
- Ortega, A., Wagenmakers, E.-J., Lee, M.D., Markowitsch, H.J., & Piefke, M. (2012). A Bayesian latent group analysis for detecting poor effort in the assessment of malingering. Archives of Clinical Neuropsychology, 27, 453-465. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2011). Modeling multitrial free recall with unknown rehearsal times. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 108-113. Austin, TX: Cognitive Science Society. [pdf]
- Pooley. J.P., Lee, M.D., & Shankle. W.R. (2011). Understanding Alzheimer’s using memory models and hierarchical Bayesian analysis. Journal of Mathematical Psychology, 55, 47-56. [pdf]
- Macguire, A.M., Humphreys, M.S., Dennis, S.J., & Lee, M.D. (2010). Global similarity accounts of embedded-category designs: Test of the global matching models. Journal of Memory & Language, 63, 131-148. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2010). Modeling change in recognition bias with the progression of Alzheimer’s. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 103-108. Austin, TX: Cognitive Science Society. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2009). Recognition memory deficits in Alzheimer’s disease: Modeling clinical groups and individual patients. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 2849-2954. Austin, TX: Cognitive Science Society. [pdf]
- Dennis, S.J., Lee, M.D., & Kinnell, A. (2008). Bayesian analysis of recognition memory: The case of the list-length effect. Journal of Memory & Language, 59, 361-376. [pdf] [code]
- Lee, M.D. (2004). A Bayesian analysis of retention functions. Journal of Mathematical Psychology, 48, 310-321. [pdf]
- Vickers, D., & Lee, M.D. (1998). Never cross the path of a traveling salesman: The neural network generation of Halstead-Reitan trail making tests. Behavior Research, Methods, Instruments, & Computers, 30, 423-431. [pdf]
- Vickers, D., & Lee, M.D. (1997). Towards a dynamic connectionist model of memory. Behavioral and Brain Sciences, 20, 40-41. [pdf]
- Lee, M.D., Vickers, D., & Brown, M. (1997). Neural network and tree search algorithms for the generation of path-following (trail making) tests. Journal of Intelligent Systems, 7, 117-143. [pdf]
Wisdom of the crowd
- Lee, M.D. (2024). Using cognitive models to improve the wisdom of the crowd. Current Directions in Psychological Science. Accepted 5-Jun-2024. [pdf]
- Thomas, B., Coon, J., Westfall, H.A., & Lee, M.D. (2021). Model-based wisdom of the crowd for sequential decision-making tasks. Cognitive Science, 45, e13011. [pdf] [osf]
- Montgomery, L.E., Bradford, N., & Lee, M.D. (in press). The wisdom of the crowd with partial rankings: A Bayesian approach implementing the Thurstone model in JAGS. Behavior Research Methods. Accepted 8-Jul-2024. [pdf]
- Montgomery, L.E., Baldini, C.M., Vandekerckhove, J., & Lee, M.D. (in press). Where’s Waldo, Ohio? Using cognitive models to improve the aggregation of spatial knowledge. Computational Brain & Behavior. Accepted 18-Feb-2024. [pdf]
- Montgomery, L.E., & Lee, M.D. (in press). The wisdom of the crowd and framing effects in spatial knowledge. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Montgomery, L.E., & Lee, M.D. (2021). Expert and novice sensitivity to environmental regularities in predicting NFL games. Judgment and Decision Making, 16, 1370-1391. [pdf] [osf]
- Lee, M.D., Danileiko, I., & Vi, J. (2018). Testing the ability of the surprisingly popular method to predict NFL games. Judgment and Decision Making, 13, 322-333. [pdf] [osf] [link] [corrigendum]
- Danileiko, I. & Lee, M.D. (2017). A model-based approach to the wisdom of the crowd in category learning. Cognitive Science, 42, 861-883. [pdf] [osf]
- Lee, M.D., & Lee, M.N. (2017). The relationship between crowd majority and accuracy for binary decisions. Judgment and Decision Making, 12, 328-343. [pdf] [osf] [link]
- Selker, R., Lee, M.D., & Iyer, R. (2017). Thurstonian cognitive models for aggregating top-n lists. Decision, 4, 87-101. [pdf] [osf]
- Lee, M.D., Steyvers, M., & Miller, B.J. (2014). A cognitive model for aggregating people’s rankings. PLoS ONE, 9. [pdf] [supplementary material] [data] [link] [git]
- Lee, M.D., & Danileiko, I. (2014). Using cognitive models to combine probability estimates. Judgment and Decision Making, 9, 259-273.[pdf] [data1] [data2] [code] [link]
- Lee, M.D., Steyvers, M., de Young, M., & Miller. B.J. (2012). Inferring expertise in knowledge and prediction ranking tasks. Topics in Cognitive Science, 4, 151-163. [pdf]
- Yi, S.K., Steyvers, M., Lee, M.D, & Dry, M.D. (2012). The wisdom of the crowd in combinatorial problems. Cognitive Science, 36,452-470. [pdf]
- Lee, M.D., Zhang, S., & Shi, J. (2011). The wisdom of the crowd playing the Price is Right. Memory & Cognition, 39, 914-923. [pdf] [accompanying technical note] [data]
- Lee, M.D., Steyvers, M., de Young, M., & Miller, B. (2011). A model-based approach to measuring expertise in ranking tasks. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 1304-1309. Austin, TX: Cognitive Science Society. [pdf]
- Yi, S.K., Steyvers, M., Lee, M.D., & Dry, M.J. (2010). Wisdom of the crowds in minimum spanning tree problems. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1840-1845. Austin, TX: Cognitive Science Society. [pdf]
- Zhang, S., & Lee, M.D., (2010). Cognitive models and the wisdom of crowds: A case study using the bandit problem. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1118-1123. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Shi, J. (2010). The accuracy of small-group estimation and the wisdom of crowds. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1124-1129. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Grothe, E., & Steyvers, M. (2009). Conjunction and disjunction fallacies in prediction markets. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1639-1644. Austin, TX: Cognitive Science Society. [pdf]
- Steyvers, M., Lee, M.D., Miller, B., & Hemmer, P. (2009). The wisdom of crowds in the recollection of order information. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 22, pp. 1785-1793. Cambridge: MA: MIT Press. [pdf]
- Miller, B., Hemmer, P., Steyvers, M., & Lee, M.D. (2009). The wisdom of crowds in rank ordering problems. In A. Howes, D. Peebles, & R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Lee, M.D., & Paradowski, M.J. (2007). Group performance on an optimal stopping problem. Journal of Problem Solving, 1, 53-73. [pdf] (Accompanying technical note [pdf]).
- Malhotra, V., Lee, M.D., & Khurana, A.K. (2007). Domain experts influence decision quality: Towards a robust method for their identification. Journal of Petroleum Science and Engineering, 57, 181-194. [pdf]
- Malhotra, V., Lee, M.D., & Khurana, A.K. (2004). Decisions and uncertainty management: Expertise Matters. SPE paper 88511 in Proceedings of the 2004 SPE Asia Pacific Oil and Gas Conference and Exhibition. Perth, Australia: SPE.
Representation
- Gronau, Q.F., & Lee, M.D. (2020). Bayesian inference for multidimensional scaling representations with psychologically-interpretable metrics. Computational Brain & Behavior, 3, 322-340. [osf] [sharedIt]
- Okada, K., & Lee, M.D. (2016). A Bayesian approach to modeling group and individual differences in multidimensional scaling. Journal of Mathematical Psychology, 70, 35-44. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2011). A comparison of three measures of the association between a feature and a concept. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 243-248. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Sarnecka, B.W. (2011). Number knower-levels in young children: Insights from a Bayesian model. Cognition, 120, 391-402. [doi] [supplementary note]
- Lee, M.D., & Sarnecka, B.W. (2011). Number knower-levels in young children: Insights from a Bayesian model. Cognition, 120, 391-402. [doi] [supplementary note]
- Zhang, S, Lee, M.D., Yu, M., & Xin, J. (2011). Modeling category identification using sparse instance representation. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2574-2579. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Sarnecka, B.W. (2010). A model of knower-level behavior in number-concept development. Cognitive Science, 34, 51-67. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2010). Finding the features that represent stimuli. Acta Psychologica, 133, 283-295. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2010). Heuristics for choosing features to represent stimuli. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1565-1570. Austin, TX: Cognitive Science Society. [pdf]
- Sarnecka, B.W., & Lee, M.D. (2009). Levels of number knowledge in early childhood. Journal of Experimental Child Psychology, 103, 325-337. [pdf]
- Lee, M.D., Pincombe, B.M., & Welsh, M.B. (2005). An empirical evaluation of models of text document similarity. In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1254-1259. Mahwah, NJ: Erlbaum. [pdf] [data]
- Zeigenfuse, M.D., & Lee, M.D. (2008). Finding feature representations of stimuli: Combining feature generation and similarity judgment tasks. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1825-1830. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Navarro, D.J. (2005). Minimum description length and psychological clustering models. In P.D. Grünwald, I.J. Myung and M.A. Pitt (Eds.), Advances in Minimum Description Length: Theory and Applications, pp. 355-384. Cambridge, MA: MIT Press. [pdf]
- Navarro, D.J., & Lee, M.D. (2004). Common and distinctive features in stimulus representation: A modified version of the contrast model. Psychonomic Bulletin & Review, 11, 961–974. [pdf]
- Navarro, D.J., & Lee, M.D. (2003). Combining dimensions and features in similarity-based representations. In S. Becker, S. Thrun and K. Obermayer (Eds.), Advances in Neural Information Processing Systems 15, pp. 59-66. Cambridge, MA: MIT Press. [pdf]
- Lee, M.D., & Pope, K.J. (2003). Avoiding the dangers of averaging across subjects when using multidimensional scaling. Journal of Mathematical Psychology, 47, 32-46. [pdf]
- Navarro, D.J., & Lee, M.D. (2002). Commonalities and distinctions in featural stimulus representations. In W.G. Gray & C. D. Schunn, (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society, pp. 685-690. Mahwah, NJ: Erlbaum.
- Lee, M.D. (2002). Generating additive clustering models with limited stochastic complexity. Journal of Classification, 19, 69-85. [pdf]
- Lee, M.D. (2002). A simple method for generating additive clustering models with limited complexity. Machine Learning, 49, 39-58. [pdf]
- Navarro, D.J., & Lee, M.D. (2001). Clustering using the contrast model. In J.D. Moore & K. Stenning, (Eds.), Proceedings of the 23rd Annual Conference of the Cognitive Science Society, pp. 686-691. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D. (2001). Extending Bayesian concept learning to deal with representational complexity and adaptation. Behavioral and Brain Sciences, 24, 685-686. [pdf]
- Lee, M.D. (2001). Determining the dimensionality of multidimensional scaling models for cognitive modeling. Journal of Mathematical Psychology, 45, 149-166. [pdf]
- Lee, M.D. (2001). On the complexity of additive clustering models. Journal of Mathematical Psychology, 45, 131-148. [pdf]
- Lee, M.D. (1999). An extraction and regularization approach to additive clustering. Journal of Classification, 16, 255-281. [pdf]
- Lee, M.D. (1998). Neural feature abstraction from judgments of similarity. Neural Computation, 10, 1815-1830. [pdf]
- Lee, M.D. (1997). The connectionist construction of psychological spaces. Connection Science, 9, 323-351. [pdf]
- Lee, M.D. (1996). A neural network which [sic] learns psychological internal representations. Proceedings of the 1996 Australian New-Zealand Conference on Intelligent Information Systems, 182-185.
Perception and visualization
- Butavicius, M.A., Lee, M.D., Pincombe, B.M., Mullen, L.G., Navarro, D.J., Parsons, K.M., & McCormac, A. (2012). An assessment of email and spontaneous dialogue visualizations. International Journal of Human-Computer Studies, 70, 432-439. [pdf]
- Dry, M.J., Navarro, D.J., Preiss, A.K., & Lee, M.D. (2009). The perceptual organization of point constellations. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1151-1156. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Habibi, A. (2009). A cyclic sequential sampling model of bistable auditory perception. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 2669-2674. Austin, TX: Cognitive Science Society. [pdf]
- Fletcher, K.I., Butavicius, M.A., & Lee, M.D. (2008). Attention to internal features in unfamiliar face matching. British Journal of Psychology, 99, 379-394. [pdf]
- Rubin, T.N., Lee, M.D., & Chubb, C.F. (2008). Hierarchical Bayesian modeling of individual differences in texture discrimination. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1404-1409 Austin, TX: Cognitive Science Society. [pdf]
- Butavicius, M.A., & Lee, M.D. (2007). An empirical evaluation of four data visualization techniques for displaying short news text similarities. International Journal of Human-Computer Studies, 65, 931-944. [pdf] (Reprinted in R. Dale, D. Burnham, & C.J. Stevens (Eds.), Human Communication Science: A Compendium, pp. 125-148. Sydney: ARC Research Network in Communication Science.)
- Lee, M.D., Vast, R.L., & Butavicius, M.A. (2006). Face matching under time pressure and task demands. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society, pp. 1675-1680. Mahwah, NJ: Erlbaum. [pdf]
- Navarro, D.J., Lee, M.D., & Nikkerud, H. (2005). Learned categorical perception for natural faces. In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1600-1605. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., Butavicius, M.A., & Reilly, R.E. (2003). Visualizations of binary data: A comparative evaluation. International Journal of Human-Computer Studies, 59, 569-602. [pdf]
- Lee, M.D., Reilly, R.E., & Butavicius, M.A. (2003). An empirical evaluation of Chernoff faces, star glyphs, and spatial visualizations for binary data. In T. Pattison & B. Thomas, (Eds.), Proceeding of the Australian Symposium on Information Visualisation, pp. 1-10. Sydney: Australian Computer Society Inc.
- Vickers, D., Navarro, D.J., & Lee, M.D. (2000). Towards a transformational approach to perceptual organization. In: R.J. Howlett & L.C. Jain (Eds.), KES 2000: Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, Vol. 1, pp. 325-328. Piscataway, NJ: IEEE.
- Lee, M.D. (1998). Interactive visualisation of similarity structures. In P. Calder and B.H. Thomas (Eds.), Proceedings of OZCHI 98, pp. 292-299. Piscataway, NJ: IEEE.
Problem solving
- Chronicle, E.P., MacGregor, J.N., Lee, M.D., Ormerod, T.C., & Hughes, P. (2008). Individual differences in optimization problem solving: Reconciling conflicting results. Journal of Problem Solving, 2, 41-49. [pdf]
- Dry, M.J., Lee, M.D., Vickers, D., & Hughes, P. (2006). Human performance on visually presented traveling salesperson problems with varying numbers of nodes. Journal of Problem Solving, 1, 20-32. [pdf]
- Burns, N.R., Lee, M.D., & Vickers, D. (2006). Are individual differences in performance on perceptual and cognitive optimization problems determined by general intelligence? Journal of Problem Solving, 1, 5-19. [pdf]
- Vickers, D., Lee, M.D., Dry, M., Hughes, P., & McMahon, J.A. (2006). The aesthetic appeal of minimal structures: Judging the attractiveness of solutions to Traveling Salesperson problems. Perception & Psychophysics, 68, 32-42. [pdf]
- Vickers, D., Mayo, T., Heitman, M., Lee, M.D., & Hughes, P. (2004). Intelligence and individual differences in performance on three types of visually presented optimisation problems. Personality and Individual Differences, 36, 1059-1071. [pdf]
- Vickers, D., Lee, M.D., Dry, M., & Hughes, P. (2003). The roles of the convex hull and number of intersections upon performance on visually presented traveling salesperson problems. Memory & Cognition, 31, 1094-1104. [pdf]
- Vickers, D., Bovet, P., Lee, M.D., & Hughes, P. (2003). The perception of minimal structures: Performance on open and closed versions of visually presented Euclidean Traveling Salesperson problems. Perception, 32, 871-886. [pdf]
- Vickers, D., Butavicius, M.A., Lee, M.D., & Medvedev, A. (2001). Human performance on visually presented traveling salesman problems. Psychological Research, 65, 34-45.
- Lee, M.D., & Vickers, D. (2000). The importance of the convex hull for human performance on the traveling salesman problem: Comment on Macgregor & Ormerod (1996). Perception & Psychophysics, 62, 226-228. [pdf]
Commentaries and other
- Vandekerckhove, J., White, C.N., Trueblood, J.S., Rouder, J.N., Matzke, D., Etz, A., Leite, F.P., Donkin, C., Devezer, B., Criss, A.H., & Lee, M.D. (2019). Robust diversity in cognitive science. Computational Brain & Behavior, 2, 271-276. [osf]
- Lee, M.D., Criss, A.H., Devezer, B., Donkin, C., Etz, A., Leite, F.P., Matzke, D., Rouder, J.N., Trueblood, J.S., White, C.N., & Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2, 141-153. [osf]
- Falmagne, J.-C., & Lee, M.D. (2015). Mathematical psychology. In Wright, J. D. (Ed.), International Encyclopedia of the Social and Behavioral Sciences (second edition), pp. 800-807. Elsevier. [pdf]
- Lee, M.D., & Vanpaemel, W. (2013). Quantum models of cognition as Orwellian newspeak. Behavioral and Brain Sciences, 36, 295-296. [pdf]
- Lee, M.D. (2010). Emergent and structured cognition in Bayesian models: Comment on Griffiths et al and McClelland et al. Trends in Cognitive Sciences, 14, 345-346. [pdf]
- Lee, M.D. (2011). In praise of ecumenical Bayes. Behavioral and Brain Sciences, 34, 206-207. [pdf]
- Mackay, M., & Lee, M.D., (2005). Choice of models for the analysis and forecasting of hospital beds. Health Care Management Science Journal, 8, 221-230. [pdf]
Books
- Lee, M.D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. [Book Website] [Google Books] [Amazon US] [Amazon UK] [Cambridge University Press]. You can download drafts of the first two parts of the book, the associated code, and some draft answers.
Book Chapters
- Lee, M.D., & Navarro, D.J. (2005). Minimum description length and psychological clustering models. In P.D. Grünwald, I.J. Myung and M.A. Pitt (Eds.), Advances in Minimum Description Length: Theory and Applications, pp. 355-384. Cambridge, MA: MIT Press. [pdf]
- Wagenmakers, E.-J., Lee, M.D., Lodewyckx, T., & Iverson, G. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, and P. Boelen (Eds.), Practical Evaluation of Informative Hypotheses, pp. 181-207. Springer: New York. [pdf]
- Lee, M.D., Loughlin, N., & Lundberg, I. (2011). Applying one-reason decision making: The prioritization of literature searches. In G. Gigerenzer, R. Hertwig, and T. Pachur (Eds.), Heuristics: The Foundations of Adaptive Behavior. Oxford University Press. (Reprinted from Australian Journal of Psychology, 54, 137-143). [pdf]
- Butavicius, M.A. & Lee, M.D. (2011). An empirical evaluation of four data visualization techniques for displaying short news text similarities. In R. Dale, D. Burnham, & C.J. Stevens (Eds.), Human Communication Science: A Compendium, pp. 125-148. Sydney: ARC Research Network in Communication Science. (Reprinted from International Journal of Human-Computer Studies, 65 (11), 931-944). [pdf]
- Pachur, T., Raaijmakers, J. G. W., Davelaar, E. J., Daw, N. D., Dougherty, M. R., Hommel, B., Lee, M. D., Polyn, S. M., Ridderinkhof, K. R., Todd, P. M., & Wolfe, J. M. (2012). Unpacking cognitive search: Mechanisms and processes. In: P. M. Todd, T. T. Hills, & T. W. Robbins (eds.), Cognitive search: Evolution, algorithms, and the brain. Strüngmann Forum Reports, Vol. 9. Cambridge, MA: MIT Press. [pdf]
- Falmagne, J.-C., & Lee, M.D. (2015). Mathematical psychology. In Wright, J. D. (Ed.), International Encyclopedia of the Social and Behavioral Sciences (second edition), pp. 800-807. Elsevier. [pdf]
- Lee, M.D., Lodewyckx, T., & Wagenmakers, E.-J. (2015). Three Bayesian analyses of memory deficits in patients with dissociative identity disorder. In J. R. Raaijmakers, A. Criss, R. Goldstone, R. Nosofsky, & M. Steyvers (Eds.), Cognitive modeling in perception and memory: A festschrift for Richard M. Shiffrin, pp. 189-200. Psychology Press. [pdf]
- Lee, M.D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Volume 5: Methodology (Fourth Edition). John Wiley & Sons. [pdf] [osf]
- Wagenmakers, E.-J., Lee, M.D., Rouder, J.N., & Morey, R.D. (2020). The principle of predictive Irrelevance, or why intervals should not be used for model comparison featuring a point null hypothesis. In C. Gruber (Ed.), The Theory of Statistics in Psychology — Applications, Use and Misunderstandings, pp. 111-119. New York: Springer. [osf]
- Lee, M.D., & Ke, M.Y. (in press). Modeling individual differences in beliefs and opinions using Thurstonian models. In J. Musolino, P. Hemmer, & J. Sommer (Eds.), The Science of Beliefs. Cambridge University Press. [pdf] [osf]
Journal Articles
- Lee, M.D. (1997). The connectionist construction of psychological spaces. Connection Science, 9, 323-351. [pdf]
- Lee, M.D., Vickers, D., & Brown, M. (1997). Neural network and tree search algorithms for the generation of path-following (trail making) tests. Journal of Intelligent Systems, 7, 117-143. [pdf]
- Vickers, D., & Lee, M.D. (1997). Towards a dynamic connectionist model of memory. Behavioral and Brain Sciences, 20, 40-41. [pdf]
- Lee, M.D. (1998). Neural feature abstraction from judgments of similarity. Neural Computation, 10, 1815-1830. [pdf]
- Vickers, D., & Lee, M.D. (1998). Dynamic models of simple judgments: I. Properties of a self-regulating accumulator module. Non-linear Dynamics, Psychology, and Life Sciences, 2, 169-194. [pdf]
- Vickers, D., & Lee, M.D. (1998). Never cross the path of a traveling salesman: The neural network generation of Halstead-Reitan trail making tests. Behavior Research, Methods, Instruments, & Computers, 30, 423-431. [pdf]
- Lee, M.D. (1999). An extraction and regularization approach to additive clustering. Journal of Classification, 16, 255-281. [pdf]
- Lee, M.D., & Vickers, D. (2000). The importance of the convex hull for human performance on the traveling salesman problem: Comment on Macgregor & Ormerod (1996). Perception & Psychophysics, 62, 226-228. [pdf]
- Vickers, D., & Lee, M.D. (2000). Dynamic models of simple judgments: II. Properties of a Parallel, Adaptive, Generalised Accumulator Network (PAGAN) model for multi-choice tasks. Non-linear Dynamics, Psychology, and Life Sciences, 4, 1-31. [pdf]
- Lee, M.D. (2001). On the complexity of additive clustering models. Journal of Mathematical Psychology, 45, 131-148. [pdf]
- Lee, M.D. (2001). Determining the dimensionality of multidimensional scaling models for cognitive modeling. Journal of Mathematical Psychology, 45, 149-166. [pdf]
- Lee, M.D. (2001). Extending Bayesian concept learning to deal with representational complexity and adaptation. Behavioral and Brain Sciences, 24, 685-686. [pdf]
- Vickers, D., Butavicius, M.A., Lee, M.D., & Medvedev, A. (2001). Human performance on visually presented traveling salesman problems. Psychological Research, 65, 34-45.
- Lee, M.D. (2002). A simple method for generating additive clustering models with limited complexity. Machine Learning, 49, 39-58. [pdf]
- Lee, M.D. (2002). Generating additive clustering models with limited stochastic complexity. Journal of Classification, 19, 69-85. [pdf]
- Lee, M.D., Loughlin, N., & Lundberg, I.B. (2002). Applying one reason decision making: The prioritization of literature searches. Australian Journal of Psychology, 54, 137-143. [pdf]
- Lee, M.D., & Navarro, D.J. (2002). Extending the ALCOVE model of category learning to featural stimulus domains. Psychonomic Bulletin & Review, 9, 43-58. [pdf]
- Lee, M.D., & Corlett, E.Y. (2003). Sequential sampling models of human text classification. Cognitive Science, 27, 159-193. [pdf]
- Lee, M.D., & Pope, K.J. (2003). Avoiding the dangers of averaging across subjects when using multidimensional scaling. Journal of Mathematical Psychology, 47, 32-46. [pdf]
- Lee, M.D., Butavicius, M.A., & Reilly, R.E. (2003). Visualizations of binary data: A comparative evaluation. International Journal of Human-Computer Studies, 59, 569-602. [pdf]
- Vickers, D., Bovet, P., Lee, M.D., & Hughes, P. (2003). The perception of minimal structures: Performance on open and closed versions of visually presented Euclidean Traveling Salesperson problems. Perception, 32, 871-886. [pdf]
- Vickers, D., Lee, M.D., Dry, M., & Hughes, P. (2003). The roles of the convex hull and number of intersections upon performance on visually presented traveling salesperson problems. Memory & Cognition, 31, 1094-1104. [pdf]
- Vickers, D., Mayo, T., Heitman, M., Lee, M.D., & Hughes, P. (2004). Intelligence and individual differences in performance on three types of visually presented optimisation problems. Personality and Individual Differences, 36, 1059-1071. [pdf]
- Lee, M.D., & Cummins, T.D.R. (2004). Evidence accumulation in decision making: Unifying the ‘take the best’ and ‘rational’ models. Psychonomic Bulletin & Review, 11, 343-352. [pdf] [data]
- Lee, M.D. (2004). A Bayesian analysis of retention functions. Journal of Mathematical Psychology, 48, 310-321. [pdf]
- Navarro, D.J., & Lee, M.D. (2004). Common and distinctive features in stimulus representation: A modified version of the contrast model. Psychonomic Bulletin & Review, 11, 961–974. [pdf]
- Lee, M.D., & Wagenmakers, E.-J. (2005). Bayesian statistical inference in psychology: Comment on Trafimow (2003). Psychological Review, 112, 662-668. [pdf]
- Mackay, M., & Lee, M.D., (2005). Choice of models for the analysis and forecasting of hospital beds. Health Care Management Science Journal, 8, 221-230. [pdf]
- Lee, M.D., & Webb, M.R. (2005). Modeling individual differences in cognition. Psychonomic Bulletin & Review, 12, 605-621. [pdf]
- Vickers, D., Lee, M.D., Dry, M., Hughes, P., & McMahon, J.A. (2006). The aesthetic appeal of minimal structures: Judging the attractiveness of solutions to Traveling Salesperson problems. Perception & Psychophysics, 68, 32-42. [pdf]
- Navarro, D.J., Griffiths, T.L., Steyvers, M., & Lee, M.D. (2006). Modeling individual differences with Dirichlet processes. Journal of Mathematical Psychology, 50, 101-102. [pdf]
- Lee, M.D., & Pope, K.J. (2006). Model selection for the rate problem: A comparison of significance testing, Bayesian, and minimum description length statistical inference. Journal of Mathematical Psychology, 50, 193-202. [pdf]
- Lee, M.D. (2006). A hierarchical Bayesian model of human decision making on an optimal stopping problem. Cognitive Science, 30, 555-580. [pdf]
- Burns, N.R., Lee, M.D., & Vickers, D. (2006). Are individual differences in performance on perceptual and cognitive optimization problems determined by general intelligence? Journal of Problem Solving, 1, 5-19. [pdf]
- Dry, M.J., Lee, M.D., Vickers, D., & Hughes, P. (2006). Human performance on visually presented traveling salesperson problems with varying numbers of nodes. Journal of Problem Solving, 1, 20-32. [pdf]
- Lee, M.D., & Dry, M.J. (2006). Decision making and confidence given uncertain advice. Cognitive Science. 30, 1081-1095. [pdf]
- Butavicius, M.A., & Lee, M.D. (2007). An empirical evaluation of four data visualization techniques for displaying short news text similarities. International Journal of Human-Computer Studies, 65, 931-944. [pdf]
- Malhotra, V., Lee, M.D., & Khurana, A.K. (2007). Domain experts influence decision quality: Towards a robust method for their identification. Journal of Petroleum Science and Engineering, 57, 181-194. [pdf]
- Lee, M.D., & Paradowski, M.J. (2007). Group performance on an optimal stopping problem. Journal of Problem Solving, 1, 53-73. [pdf] (Accompanying technical note [pdf]).
- Lee, M.D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1-15. [pdf]
- Fletcher, K.I., Butavicius, M.A., & Lee, M.D. (2008). Attention to internal features in unfamiliar face matching. British Journal of Psychology, 99, 379-394. [pdf]
- Lee, M.D. (2008). BayesSDT: Software for Bayesian inference with signal detection theory. Behavior Research Methods, 40, 450-456. [pdf]
- Lee, M.D., & Vanpaemel, W. (2008). Exemplars, prototypes, similarities and rules in category representation: An example of hierarchical Bayesian analysis. Cognitive Science, 32, 1403-1424. [pdf]
- Chronicle, E.P., MacGregor, J.N., Lee, M.D., Ormerod, T.C., & Hughes, P. (2008). Individual differences in optimization problem solving: Reconciling conflicting results. Journal of Problem Solving, 2, 41-49. [pdf]
- Dennis, S.J., Lee, M.D., & Kinnell, A. (2008). Bayesian analysis of recognition memory: The case of the list-length effect. Journal of Memory & Language, 59, 361-376. [pdf] [code]
- Shiffrin, R.M., Lee, M.D., Wagenmakers, E.-J., & Kim, W.J. (2008). A survey of model evaluation approaches with a focus on hierarchical Bayesian methods. Cognitive Science, 32, 1248-1284. [pdf]
- Iverson, G.J., Lee, M.D., & Wagenmakers, E.-J. (2009). prep misestimates the probability of replication. Psychonomic Bulletin & Review, 16, 424-429. [pdf]
- Steyvers, M., Lee, M.D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of human decision making on bandit problems. Journal of Mathematical Psychology, 53, 168-179. [pdf]’
- Iverson, G.J., Lee, M.D., Zhang, S., & Wagenmakers, E.-J. (2009). prep: An agony in five fits. Journal of Mathematical Psychology, 53, 195-202. [pdf]
- Sarnecka, B.W., & Lee, M.D. (2009). Levels of number knowledge in early childhood. Journal of Experimental Child Psychology, 103, 325-337. [pdf]
- Yi, S.K.M., Steyvers, M., & Lee, M.D. (2009). Modeling human performance in restless bandits using particle filters. Journal of Problem Solving, 2, 33-53. [pdf]
- Lee, M.D., & Sarnecka, B.W. (2010). A model of knower-level behavior in number-concept development. Cognitive Science, 34, 51-67. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2010). Finding the features that represent stimuli. Acta Psychologica, 133, 283-295. [pdf]
- Iverson, G.J., Wagenmakers, E.-J., & Lee, M. D. (2010). A model averaging approach to replication: The case of prep. Psychological Methods, 15, 172-181. [pdf]
- Iverson, G.J, Lee, M.D., & Wagenmakers, E.-J. (2010). The random-effects prep continues to mispredict the probability of replication. Psychonomic Bulletin & Review, 17, 270-272. [pdf] Accompanying technical note [pdf]
- Wetzels, R., Lee, M.D., & Wagenmakers, E.-J. (2010). Bayesian inference using WBDev: A tutorial for social scientists. Behavior Research Methods, 42, 884-897. [pdf]
- Macguire, A.M., Humphreys, M.S., Dennis, S.J., & Lee, M.D. (2010). Global similarity accounts of embedded-category designs: Test of the global matching models. Journal of Memory & Language, 63, 131-148. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2010). A general latent-assignment approach for modeling psychological contaminants. Journal of Mathematical Psychology, 54, 352-362. [pdf]
- Lee, M.D. (2010). Emergent and structured cognition in Bayesian models: Comment on Griffiths et al and McClelland et al. Trends in Cognitive Sciences, 14, 345-346. [pdf]
- Zhang, S., & Lee, M.D. (2010). Optimal experimental design for a class of bandit problems. Journal of Mathematical Psychology, 54, 499-508. [pdf]
- Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44-62. [pdf]
- Lee, M.D., Zhang, S., Munro, M.N., & Steyvers, M. (2011). Psychological models of human and optimal performance on bandit problems. Cognitive Systems Research, 12, 164-174. [pdf] [data]
- Lee, M.D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55, 1-7. [pdf]
- Pooley. J.P., Lee, M.D., & Shankle. W.R. (2011). Understanding Alzheimer’s using memory models and hierarchical Bayesian analysis. Journal of Mathematical Psychology, 55, 47-56. [pdf]
- Lee, M.D., Zhang, S., & Shi, J. (2011). The wisdom of the crowd playing the Price is Right. Memory & Cognition, 39, 914-923. [pdf] [accompanying technical note] [data]
- Lee, M.D., & Sarnecka, B.W. (2011). Number knower-levels in young children: Insights from a Bayesian model. Cognition, 120, 391-402. [doi] [supplementary note]
- Wetzels, R., Matzke, D., Lee, M.D., Rouder, J.N., Iverson, G.J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t-tests. Perspectives in Psychological Science, 6, 291-298. [pdf]
- Lee, M.D. (2011). In praise of ecumenical Bayes. Behavioral and Brain Sciences, 34, 206-207. [pdf]
- Newell, B.R., & Lee, M.D. (2011). The right tool for the job? Comparing an evidence accumulation and a naive strategy selection model of decision making. Journal of Behavioral Decision Making, 24, 456-481. [pdf]
- Lodewyckx, T., Kim, W.-J., Lee, M.D., Tuerlinckx, F., Kuppens, P., & Wagenmakers, E.-J. (2011). A tutorial on Bayes Factor estimation with the product space method. Journal of Mathematical Psychology, 55, 331-347. [pdf]
- Navarro, D.J., Dry, M.J., & Lee, M.D. (2012). Sampling assumptions in inductive generalization. Cognitive Science, 36, 187-223. [pdf] [data]
- Yi, S.K., Steyvers, M., Lee, M.D, & Dry, M.D. (2012). The wisdom of the crowd in combinatorial problems. Cognitive Science, 36,452-470. [pdf]
- Negen, J., Sarnecka, B.W., & Lee, M.D. (2012). An Excel sheet for inferring children’s number-knower-levels from Give-N data. Behavior Research Methods, 44, 57-66. [pdf]
- Lee, M.D., & Newell, B.R. (2011). Using hierarchical Bayesian methods to examine the tools of decision making. Judgment and Decision Making, 6, 832-842. [pdf] [code]
- Lee, M.D., Steyvers, M., de Young, M., & Miller. B.J. (2012). Inferring expertise in knowledge and prediction ranking tasks. Topics in Cognitive Science, 4, 151-163. [pdf]
- Butavicius, M.A., Lee, M.D., Pincombe, B.M., Mullen, L.G., Navarro, D.J., Parsons, K.M., & McCormac, A. (2012). An assessment of email and spontaneous dialogue visualizations. International Journal of Human-Computer Studies, 70, 432-439. [pdf]
- Ortega, A., Wagenmakers, E.-J., Lee, M.D., Markowitsch, H.J., & Piefke, M. (2012). A Bayesian latent group analysis for detecting poor effort in the assessment of malingering. Archives of Clinical Neuropsychology, 27, 453-465. [pdf]
- Vanpaemel, W., & Lee, M.D. (2012). The Bayesian evaluation of categorization models: Comment on Wills and Pothos (2012). Psychological Bulletin, 138, 1253-1258. [pdf]
- Lee, M.D., & Zhang, S. (2012). Evaluating the process coherence of take-the-best in structured environments. Judgment and Decision Making, 7, 360-372. [link]
- Vanpaemel, W., & Lee, M.D. (2012). Using priors to formalize theory: Optimal attention and the Generalized Context Model. Psychonomic Bulletin & Review, 19, 1047-1056. [pdf]
- Shankle, W.R., Pooley, J.P., Steyvers, M., Hara. J., Mangrola, T., Reisberg, B., & Lee, M.D. (2013). Relating memory to functional capacity in normal aging to dementia using hierarchical Bayesian cognitive processing models. Alzheimer Disease & Associated Disorders, 27, 16-22. [pdf]
- Shankle, W.R., Hara, J., Mangrola, T., Hendrix, S., Alva, G., & Lee, M.D. (2013). Hierarchical Bayesian cognitive processing models to analyze clinical trial data. Alzheimer’s & Dementia, 9, 422-428. [pdf]
- Lee, M.D., & Pooley. J.P. (2013). Correcting the SIMPLE model of free recall. Psychological Review, 120, 293-296. [pdf]
- Lee, M.D., & Vanpaemel, W. (2013). Quantum models of cognition as Orwellian newspeak. Behavioral and Brain Sciences, 36, 295-296. [pdf]
- van Ravenzwaaij, D., Moore, C.P., Lee, M.D., & Newell, B.R. (2014). A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment. Cognitive Science, 38, 1384–1405. [pdf]
- Bartlema, A., Lee, M.D., Wetzels, R., & Vanpaemel, W. (2014). A Bayesian hierarchical mixture approach to individual differences: Case studies in selective attention and representation in category learning. Journal of Mathematical Psychology, 59, 132-150. [pdf] [code]
- Lee, M.D., & Danileiko, I. (2014). Using cognitive models to combine probability estimates. Judgment and Decision Making, 9, 259-273.[pdf] [data1] [data2] [code] [link]
- Lee, M.D., Steyvers, M., & Miller, B.J. (2014). A cognitive model for aggregating people’s rankings. PLoS ONE, 9. [pdf] [supplementary material] [data] [link] [git]
- Lee, M.D., Newell, B.R., & Vandekerckhove, J. (2014). Modeling the adaptation of search termination in human decision making. Decision, 1, 223-251. [pdf]
- Zhang, S., Lee. M.D., Vandekerckhove, J., Maris, G., and Wagenmakers, E.-J. (2014). Time-varying boundaries for diffusion models of decision making and response time. Frontiers in Psychology, Quantitative Psychology and Measurement, 5, 1-11. [pdf] [link]
- Wagenmakers, E.-J., Verhagen, A.J., Ly, A., Bakker, M., Lee, M.D., Matzke, D., Rouder, J.N., & Morey, R.D. (2015). A power fallacy. Behavior Research Methods, 47, 913-917 [pdf]
- Lee, M.D. (2015). Evidence for and against a simple interpretation of the less-is-more effect. Judgment and Decision Making, 10, 18-33. [pdf] [data and code] [link]
- Mehlhorn, K., Newell, B.R., Todd, P.M., Lee, M.D., Morgan, K. Braithwaite, V.A., Hausmann, D., Fielder, K., & Gonzalez, C. (2015). Beyond the exploration-exploitation tradeoff: A synthesis of human and animal literatures. Decision, 2, 191-215. [pdf]
- Lee, M.D., Abramyan, M., & Shankle. W.R. (2016). New methods, measures, and models for analyzing memory impairment using triadic comparisons. Behavior Research Methods, 48, 1492-1507. [pdf]
- Lee, M.D. (2016). Bayesian outcome-based strategy classification. Behavior Research Methods, 48, 29-41. [pdf] [osf]
- Morey, R.D., Hoekstra, R., Rouder, J.N., Lee, M.D.., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23, 103-123. [pdf]
- Okada, K., & Lee, M.D. (2016). A Bayesian approach to modeling group and individual differences in multidimensional scaling. Journal of Mathematical Psychology, 70, 35-44. [pdf]
- Wagenmakers, E.-J., Morey, R.D., & Lee, M.D. (2016). Bayesian benefits for the pragmatic researcher. Current Directions in Psychological Science, 25, 169-176. [pdf] [osf]
- Lee, M.D., Blanco, G., & Bo, N. (2016). Testing take-the-best in new and changing environments. Behavior Research Methods, 49, 1420-1431. [pdf] [osf]
- Selker, R., Lee, M.D., & Iyer, R. (2017). Thurstonian cognitive models for aggregating top-n lists. Decision, 4, 87-101. [pdf] [osf]
- Lee, M.D., & Lee, M.N. (2017). The relationship between crowd majority and accuracy for binary decisions. Judgment and Decision Making, 12, 328-343. [pdf] [osf] [link]
- Danileiko, I. & Lee, M.D. (2017). A model-based approach to the wisdom of the crowd in category learning. Cognitive Science, 42, 861-883. [pdf] [osf]
- Matzke, D., Ly, A., Selker, R., Weeda, W.D., Scheibehenne, B., Lee, M.D., & Wagenmakers, E.-J. (2017). Bayesian inference for correlations in the presence of measurement error and estimation uncertainty. Collabra: Psychology, 3, 25. [link]
- Lee, M.D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. Psychonomic Bulletin & Review, 25, 114-127. [pdf]
- Okada, K., Vandekerckhove, J. & Lee, M.D. (2018). Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions. Behavior Research Methods, 50, 406-415. [pdf] [osf]
- Guan, H., & Lee, M.D. (2018). The effect of goals and environments on human performance in optimal stopping problems. Decision, 5, 339-361. [pdf]
- Steingroever, H., Pachur, T., Smira, M., & Lee, M.D. (2018). Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision makers. Psychonomic Bulletin & Review, 25, 951–970. [pdf] [supplement]
- Lee, M.D., Danileiko, I., & Vi, J. (2018). Testing the ability of the surprisingly popular method to predict NFL games. Judgment and Decision Making, 13, 322-333. [pdf] [osf] [link] [corrigendum]
- Lee, M.D. (2018). Bayesian methods for analyzing true-and-error models. Judgment and Decision Making, 13, 622-635. [pdf] [osf]
- Lee, M.D. (2019). A simple and flexible Bayesian method for inferring step changes in cognition. Behavior Research Methods, 51, 948-960. [pdf] [osf]
- Lee, M.D., Gluck, K.A., & Walsh, M.M. (2019). Understanding the complexity of simple decisions: Modeling multiple behaviors and switching strategies. Decision, 6, 335-368. [pdf] [osf]
- Lee, M.D., Doering, S., & Carr. A. (2019). A model for understanding recognition validity. Computational Brain & Behavior, 2, 49-63. [pdf] [osf] [link]
- Steingroever, H., Jepma, M., Lee, M.D., Jansen, B.R.J., & Huizenga, H.M. (2019). Modeling decision strategies in the developmental sciences. Computational Brain & Behavior, 2, 128-140. [osf] [link]
- Villarreal, M., Velázquez, C. A., Baroja, J. L., Segura, A., Bouzas, A., & Lee, M.D. (2019). Bayesian methods applied to the generalized matching law. Journal of the Experimental Analysis of Behavior, 111, 252-273. [pdf] [osf]
- Mistry, P., & Lee, M.D. (2019). Violence in the intifada: A demonstration of Bayesian generative cognitive modeling. Advances in Econometrics, 40, 65-90. [pdf] [osf]
- Lee, M.D., Criss, A.H., Devezer, B., Donkin, C., Etz, A., Leite, F.P., Matzke, D., Rouder, J.N., Trueblood, J.S., White, C.N., & Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2, 141-153. [osf]
- Vandekerckhove, J., White, C.N., Trueblood, J.S., Rouder, J.N., Matzke, D., Etz, A., Leite, F.P., Donkin, C., Devezer, B., Criss, A.H., & Lee, M.D. (2019). Robust diversity in cognitive science. Computational Brain & Behavior, 2, 271-276. [osf]
- Aczel, B., Hoekstra, R., Gelman, A., Wagenmakers, E.-J., Kluglist, I. G., Rouder, J. N., Vandekerckhove, J., Lee, M.D., Morey, R.D., Vanpaemel, W., Dienes, Z., & van Ravenzwaaij, D. (2020). Discussion points for Bayesian inference. Nature Human Behavior. https://doi.org/10.1038/s41562-019-0807-z. [osf] [sharedIt]
- Lee, M.D., Bock, J.R., Cushman, I., & Shankle, W.R. (2020). An application of multinomial processing tree models and Bayesian methods to understanding memory impairment. Journal of Mathematical Psychology, 95, 102328. [pdf]
- Gronau, Q.F., & Lee, M.D. (2020). Bayesian inference for multidimensional scaling representations with psychologically-interpretable metrics. Computational Brain & Behavior, 3, 322-340. [osf] [sharedIt]
- Guan, H., Stokes, R., Vandekerckhove, J., & Lee, M. D. (2020). A cognitive modeling analysis of risk in sequential choice tasks. Judgment and Decision Making, 15, 823-850. [pdf] [link] [osf]
- Schneider, M., Elbau, I.G., Nantawisarakul, T., Pöhlchen, D., Brückl, T., BeCOME working group, Czisch, M., Saemann P.G., Lee, M.D., Binder, E.B., & Spoormaker V. (2020). Reduced arousal during reward anticipation in unmedicated depressed patients. Brain Sciences, 10, 906. [pdf] [medrxiv]
- Lee, M.D., & Courey, K.A. (2021). Modeling optimal stopping in changing environments: A case study in mate selection. Computational Brain & Behavior, 4, 1-17. [pdf] [link] [sharedIt] [git]
- Lee, M.D., & Gluck, K.A. (2021). Modeling strategy switches in multi-attribute decision making. Computational Brain & Behavior, 4, 148-163. [pdf] [sharedIt] [git]
- Westfall, H.A., & Lee, M.D. (2021). A model-based analysis of the impairment of semantic memory. Psychonomic Bulletin & Review, 28, 1484-1494. [pdf]
- Thomas, B., Coon, J., Westfall, H.A., & Lee, M.D. (2021). Model-based wisdom of the crowd for sequential decision-making tasks. Cognitive Science, 45, e13011. [pdf] [osf]
- van Doorn, J., Westfall, H.A., & Lee, M.D. (2021). Using the weighted Kendall’s distance to analyze rank data in psychology. The Quantitative Methods for Psychology, 17, 154-165. [pdf] [osf]
- Courey, K.A., & Lee, M.D. (2021). A model-based examination of scale effects in student evaluations of teaching. AERA Open, 7, 1-13. [pdf] [osf]
- Montgomery, L.E., & Lee, M.D. (2021). Expert and novice sensitivity to environmental regularities in predicting NFL games. Judgment and Decision Making, 16, 1370-1391. [pdf] [osf]
- Heck, D., Boehm, U., Böing-Messing, F., Bürkner, P., Derks, K., Dienes, Z., … Hoijtink, H. (2022). A review of applications of the Bayes factor in psychological research. Psychological Methods. Accepted 27-Sep-2021. [pdf] [osf]
- Coon, J., & Lee, M.D. (2022). A Bayesian method for measuring risk propensity in the Balloon Analogue Risk Task. Behavior Research Method, 54, 1010-1026. [pdf] [sharedIt] [osf]
- Hayes, B.K., Stephens, R.G., Lee, M.D., Dunn, J.C., Kaluve, A., Choi-Christou, J., & Cruz, N. (2022). Always look on the bright side of logic? Testing explanations of intuitive sensitivity to logic in perceptual tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition. [pdf]
- Lee, M.D., & Ke, M.Y. (2022). Framing effects and preference reversals in crowd-sourced ranked opinions. Decision, 9, 153-171. [pdf]
- Villarreal, M., Stark, C.E.L., & Lee, M.D. (2022). Adaptive design optimization for a Mnemonic Similarity Task. Journal of Mathematical Psychology, 108, 102665. [pdf] [git]
- Lee, M.D., Mistry, P.K., & Menon, V. (2022). A multinomial processing tree model of the 2-back working memory task. Computational Brain & Behavior. Accepted 7-May-2022. [pdf] [osf]
- Lee, M.D., & Liu, S. (2022). Drafting strategies in fantasy football: A study of competitive sequential human decision making. Judgment and Decision Making, 17, 691-719. [pdf]
- Matsumoto, N., Kobayashi, M., Takano, K., & Lee, M.D. (2022). Autobiographical memory specificity and mnemonic discrimination. Journal of Memory and Language, 127, 104366. [pdf] [osf]
- Lee, M.D., & Stark, C.E.L. (2023). Bayesian modeling of the Mnemonic Similarity Task using multinomial processing trees. Behaviormetrika, 50, 517-539. [pdf]
- Villarreal, M., Etz, A., & Lee, M.D. (2023). Evaluating the complexity and falsifiability of psychological models. Psychological Review, 130, 853-872. [pdf]
- Chwiesko, C., Janecek, J., Doering, S., Hollearn, M., McMillan, L., Vandekerckhove, J., Lee, M.D., Ratcliff, R., & Yassa, M.A. (2023). Parsing memory and non-memory contributions to age-related declines in mnemonic discrimination performance: A hierarchical Bayesian diffusion decision modeling approach. Learning and Memory, 30(11), 296-309.
- Westfall, H. A., & Lee, M.D. (2024). An extension and clinical application of the SIMPLE model to the free recall of repeated and semantically-related items. Computational Brain & Behavior, 7, 65–79. [pdf]
- Villarreal, M., Chávez De la Peña, A.F., Mistry, P.K., Menon, V., Vandekerckhove, J., & Lee, M.D. (in press). Bayesian graphical modeling with the circular drift diffusion model. Computational Brain & Behavior. Accepted 3-Nov-2023. [pdf]
- Brendler, A., Schneider, M., Elbau, I.G., Sun, R., Nantawisarakul, T., Pöhlchen, D., Brückl, T., BeCOME Working Group, Czisch, M., Sämann, P.G., Lee, M.D., & Spoormaker, V.J. (2024). Assessing hypo‑arousal during reward anticipation with pupillometry in patients with major depressive disorder: replication and correlations with anhedonia. Scientific Reports, 13, 344. [pdf] [doi]
- Montgomery, L.E., Baldini, C.M., Vandekerckhove, J., & Lee, M.D. (in press). Where’s Waldo, Ohio? Using cognitive models to improve the aggregation of spatial knowledge. Computational Brain & Behavior. Accepted 18-Feb-2024. [pdf]
- Lee, M.D., & Chong, S. (in press). Strategies people use buying airline tickets: A cognitive modeling analysis of optimal stopping in a changing environment. Experimental Economics. Accepted 27-May-204. [pdf]
- Lee, M.D. (2024). Using cognitive models to improve the wisdom of the crowd. Current Directions in Psychological Science. Accepted 5-Jun-2024. [pdf]
- Montgomery, L.E., Bradford, N., & Lee, M.D. (in press). The wisdom of the crowd with partial rankings: A Bayesian approach implementing the Thurstone model in JAGS. Behavior Research Methods. Accepted 8-Jul-2024. [pdf]
- Vanderlip, C., Lee, M.D., & Stark, C.E.L. (in press). Cognitive modeling of the Mnemonic Similarity Task as a digital biomarker for Alzheimer’s Disease. Alzheimer’s & Dementia. Accepted 10-Jul-2024. [bioRxiv]
- Villarreal, M., & Lee, M. D. (in press). A Coupled Hidden Markov Model framework for measuring the dynamics of categorization. Journal of Mathematical Psychology. Accepted 15-Sep-2024. [pdf] [psyarxiv]
Refereed Conference Papers
- Lee, M.D. (1996). A neural network which [sic] learns psychological internal representations. Proceedings of the 1996 Australian New-Zealand Conference on Intelligent Information Systems, 182-185.
- Lee, M.D. (1998). Interactive visualisation of similarity structures. In P. Calder and B.H. Thomas (Eds.), Proceedings of OZCHI 98, pp. 292-299. Piscataway, NJ: IEEE.
- Vickers, D., Navarro, D.J., & Lee, M.D. (2000). Towards a transformational approach to perceptual organization. In: R.J. Howlett & L.C. Jain (Eds.), KES 2000: Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, Vol. 1, pp. 325-328. Piscataway, NJ: IEEE.
- Lee, M.D. (2001). Fast text classification using sequential sampling processes. In M. Stumptner, D. Corbett, and M. Brooks (Eds.), AI 2001: Advances in Artificial Intelligence, Springer-Verlag Lecture Notes on Artificial Intelligence, 2256, pp. 309-320. Berlin: Springer-Verlag. [pdf]
- Navarro, D.J., & Lee, M.D. (2001). Clustering using the contrast model. In J.D. Moore & K. Stenning, (Eds.), Proceedings of the 23rd Annual Conference of the Cognitive Science Society, pp. 686-691. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., Chandrasena, L.H., & Navarro, D.J. (2002). Using cognitive decision models to prioritize e-mails. In W.G. Gray & C. D. Schunn, (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society, pp. 478-483. Mahwah, NJ: Erlbaum. [pdf]
- Navarro, D.J., & Lee, M.D. (2002). Commonalities and distinctions in featural stimulus representations. In W.G. Gray & C. D. Schunn, (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society, pp. 685-690. Mahwah, NJ: Erlbaum.
- Lee, M.D., Reilly, R.E., & Butavicius, M.A. (2003). An empirical evaluation of Chernoff faces, star glyphs, and spatial visualizations for binary data. In T. Pattison & B. Thomas, (Eds.), Proceeding of the Australian Symposium on Information Visualisation, pp. 1-10. Sydney: Australian Computer Society Inc.
- Navarro, D.J., & Lee, M.D. (2003). Combining dimensions and features in similarity-based representations. In S. Becker, S. Thrun and K. Obermayer (Eds.), Advances in Neural Information Processing Systems 15, pp. 59-66. Cambridge, MA: MIT Press. [pdf]
- Lee, M.D. (2004). An efficient method for the minimum description length evaluation of cognitive models. In K. Forbus, D. Gentner & T. Regier, (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society, pp. 807-812. Mahwah, NJ: Erlbaum. [pdf]
- Webb, M.R., & Lee, M.D. (2004). Modeling individual differences in category learning. In K. Forbus, D. Gentner & T. Regier, (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society, pp. 1440-1445. Mahwah, NJ: Erlbaum. [pdf]
- Lee, M.D., O’Connor, T.A., & Welsh, M.B. (2004). Decision making on the full-information secretary problem. In K. Forbus, D. Gentner & T. Regier, (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society, pp. 819-824. Mahwah, NJ: Erlbaum. [pdf]
- Malhotra, V., Lee, M.D., & Khurana, A.K. (2004). Decisions and uncertainty management: Expertise Matters. SPE paper 88511 in Proceedings of the 2004 SPE Asia Pacific Oil and Gas Conference and Exhibition. Perth, Australia: SPE.
- Welsh, M.B., Begg, S.H., Bratvold, R.B., & Lee, M.D. (2004). Problems with the elicitation of uncertainty. SPE paper 90338 in Proceedings of the 80th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Richardson, TX: SPE.
- Lee, M.D., Pincombe, B.M., & Welsh, M.B. (2005). An empirical evaluation of models of text document similarity. In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1254-1259. Mahwah, NJ: Erlbaum. [pdf] [data]
- Navarro, D.J., Griffiths, T.L., Steyvers, M., & Lee, M.D. (2005). Modeling individual differences with Dirichlet processes In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1594-1599. Mahwah, NJ: Erlbaum. [pdf]
- Navarro, D.J., Lee, M.D., & Nikkerud, H. (2005). Learned categorical perception for natural faces. In B.G. Bara, L.W. Barsalou & M. Bucciarelli, (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 1600-1605. Mahwah, NJ: Erlbaum. [pdf]
- Navarro, D.J., & Lee, M.D. (2005). An application of minimum description length clustering to partitioning learning curves. Proceedings of the 2005 IEEE International Symposium on Information Theory, pp. 587-591. Piscataway, NJ: IEEE. [pdf]
- Lee, M.D., Vast, R.L., & Butavicius, M.A. (2006). Face matching under time pressure and task demands. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society, pp. 1675-1680. Mahwah, NJ: Erlbaum. [pdf]
- Campbell, J., & Lee, M.D. (2006). The effect of feedback and financial reward on human performance solving ‘secretary’ problems. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society, pp. 1068-1073. Mahwah, NJ: Erlbaum. [pdf]
- Mackie, S.I., Welsh, M.B., & Lee, M.D. (2006). An oil and gas decision-making taxonomy. SPE paper 100699 in Proceedings of the 2006 SPE Asia Pacific Oil and Gas Conference and Exhibition. Adelaide, Australia: SPE. [pdf]
- Lee, M.D., Fuss, I.G, & Navarro, D.J. (2006). A Bayesian approach to diffusion models of decision making and response time. In B. Schölkopf, J.C. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19, pp. 809-815. Cambridge, MA: MIT Press. [pdf]
- Vanpaemel, W., & Lee, M.D. (2007). A model of building representations for category learning. In D. McNamara and G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 1605-1610. Austin, TX: Cognitive Science Society. [pdf]
- Newell, B.R., Collins, P., & Lee, M.D. (2007). Adjusting the spanner: Testing an evidence accumulation model of decision making. In D. McNamara and G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 535-538. Austin, TX: Cognitive Science Society. [pdf]
- Navarro, D.J, Lee, M.D., Dry, M.J, & Schultz, B. (2008). Extending and testing the Bayesian theory of generalization. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1746-1751. Austin, TX: Cognitive Science Society. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2008). Finding feature representations of stimuli: Combining feature generation and similarity judgment tasks. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1825-1830. Austin, TX: Cognitive Science Society. [pdf]
- Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2008). A Bayesian approach to diffusion process models of decision making. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1429-1434. Austin, TX: Cognitive Science Society. [pdf]
- Welsh, M.B., Lee, M.D., & Begg, S.H. (2008). More-Or-Less Elicitation (MOLE): Testing a heuristic elicitation model. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 493-498. Austin, TX: Cognitive Science Society. [pdf]
- Rubin, T.N., Lee, M.D., & Chubb, C.F. (2008). Hierarchical Bayesian modeling of individual differences in texture discrimination. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 1404-1409 Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Habibi, A. (2009). A cyclic sequential sampling model of bistable auditory perception. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 2669-2674. Austin, TX: Cognitive Science Society. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2009). Recognition memory deficits in Alzheimer’s disease: Modeling clinical groups and individual patients. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 2849-2954. Austin, TX: Cognitive Science Society. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2009). Bayesian nonparametric modeling of individual differences: A case study using decision making on bandit problems. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1412-1415. Austin, TX: Cognitive Science Society. [pdf]
- Welsh, M.B., Lee, M.D., & Begg, S.H. (2009). Repeated judgments in elicitation tasks: Efficacy of the MOLE method. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1529-1534 Austin, TX: Cognitive Science Society. [pdf]
- Newell, B.R., & Lee, M.D. (2009). Learning to adapt evidence thresholds in decision making. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 473-478. Austin, TX: Cognitive Science Society. [pdf]
- Dry, M.J., Navarro, D.J., Preiss, A.K., & Lee, M.D. (2009). The perceptual organization of point constellations. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1151-1156. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Grothe, E., & Steyvers, M. (2009). Conjunction and disjunction fallacies in prediction markets. In N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 1639-1644. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Zhang, S., Munro. M.N., & Steyvers, M. (2009). Using heuristic models to understand human and optimal decision making on bandit problems. In A. Howes, D. Peebles, R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Miller, B., Hemmer, P., Steyvers, M., & Lee, M.D. (2009). The wisdom of crowds in rank ordering problems. In A. Howes, D. Peebles, & R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Zhang, S., Lee, M.D., & Munro. M.N. (2009). Human and optimal exploration and exploitation in bandit problems. In A. Howes, D. Peebles, & R. Cooper (Eds.), 9th International Conference on Cognitive Modeling – ICCM2009, Manchester, UK. [pdf]
- Steyvers, M., Lee, M.D., Miller, B., & Hemmer, P. (2009). The wisdom of crowds in the recollection of order information. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 22, pp. 1785-1793. Cambridge: MA: MIT Press. [pdf]
- Stephens, R.G., Navarro, D.J., Dunn, J.C., & Lee, M.D. (2009). The effect of causal strength on the use of causal and similarity-based information in feature inference. In ASC09: Proceedings of the 9th Conference of the Australasian Society for Cognitive Science. Edited by Wayne Christensen, Elizabeth Schier, and John Sutton. Sydney: Macquarie Centre for Cognitive Science. [pdf]
- Lee, M.D., & Shi, J. (2010). The accuracy of small-group estimation and the wisdom of crowds. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1124-1129. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., & Wetzels, R. (2010). Individual differences in attention during category learning. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 387-392. Austin, TX: Cognitive Science Society. [pdf]
- Zhang, S., & Lee, M.D., (2010). Cognitive models and the wisdom of crowds: A case study using the bandit problem. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1118-1123. Austin, TX: Cognitive Science Society. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2010). Heuristics for choosing features to represent stimuli. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1565-1570. Austin, TX: Cognitive Science Society. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2010). Modeling change in recognition bias with the progression of Alzheimer’s. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 103-108. Austin, TX: Cognitive Science Society. [pdf]
- Yi, S.K., Steyvers, M., Lee, M.D., & Dry, M.J. (2010). Wisdom of the crowds in minimum spanning tree problems. In R. Catrambone, & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1840-1845. Austin, TX: Cognitive Science Society. [pdf]
- Zhang, S, Lee, M.D., Yu, M., & Xin, J. (2011). Modeling category identification using sparse instance representation. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2574-2579. Austin, TX: Cognitive Science Society. [pdf]
- Zeigenfuse, M.D., & Lee, M.D. (2011). A comparison of three measures of the association between a feature and a concept. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 243-248. Austin, TX: Cognitive Science Society. [pdf]
- Lee, M.D., Steyvers, M., de Young, M., & Miller, B. (2011). A model-based approach to measuring expertise in ranking tasks. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 1304-1309. Austin, TX: Cognitive Science Society. [pdf]
- Pooley, J.P., Lee, M.D., & Shankle, W.R. (2011). Modeling multitrial free recall with unknown rehearsal times. In L. Carlson, C. Hölscher, & T.F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 108-113. Austin, TX: Cognitive Science Society. [pdf]
- Asher, D., Zhang, S., Zaldivar, A., Lee, M.D., & Krichmar, J. (2012). Modeling individual differences in socioeconomic game playing. In N. Miyake, D. Peebles, & R. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society, pp. 90-95. Austin, TX: Cognitive Science Society. [pdf]
- van Ravenzwaaij, D., Newell, B.R., Moore, C.P., & Lee, M.D. (2013). Using recognition in multi-attribute decision environments. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society, pp. 3627-3632. Austin, TX: Cognitive Science Society. [pdf]
- Guan, H., Lee, M.D., & Silva, A. (2014). Threshold models of human decision making on optimal stopping problems in different environments. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society, pp. 553-558. Austin, TX: Cognitive Science Society. [pdf] [data]
- Lee, M.D., Liu, E.C., & Steyvers, M. (2015). The roles of knowledge and memory in generating top-10 lists. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 1267-1272. Austin, TX: Cognitive Science Society. [pdf]
- Guan, H,. Lee, M.D., & Vandekerckhove, J. (2015). A hierarchical cognitive threshold model of human decision making on different length optimal stopping problems. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 824-829. Austin, TX: Cognitive Science Society. [pdf] [supplement]
- Danileiko, I., Lee, M.D., & Kalish, M.L. (2015). A Bayesian latent mixture approach to modeling individual differences in categorization using General Recognition Theory. In D.C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 501-506. Austin, TX: Cognitive Science Society. [pdf] [supplement]
- Mistry, P.K., Lee, M.D., & Newell, B.R. (2016). An empirical evaluation of models for how people learn cue search orders. In J. Trueswell, A. Papafragou, D. Grodner, & D. Mirman (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society, pp. 211-216. Austin, TX: Cognitive Science Society. [pdf] [osf]
- Danileiko, I., & Lee, M.D. (2016). Inferring individual differences between and within exemplar and decision-bound models of categorization. In J. Trueswell, A. Papafragou, D. Grodner, & D. Mirman (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society, pp. 2825-2830. Austin, TX: Cognitive Science Society. [pdf] [osf]
- Mistry, P.K., Skewes, J., & Lee, M.D. (2018). An adaptive signal detection model applied to understanding autism spectrum disorder. In C. Kalish, M. Rau, J. Zhu, & T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society, pp. 774-779. Austin, TX: Cognitive Science Society. [pdf]
- Westfall, H.A., & Lee, M.D. (2021). A model-based analysis of changes in the semantic structure of free recall due to cognitive impairment. In T. Fitch, C. Lamm, H. Leder, & K. Teßmar-Raible (Eds.), Proceedings of the 43rd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Banavar, N.V., Lee, M.D., & Bornstein, A.M. (2021). Sequential effects in non-sequential tasks. In T. Stewart (Ed.), Proceedings of the 19th International Conference on Cognitive Modeling. [pdf]
- Westfall, H.A., & Lee, M.D. (in press). A model of free recall for multiple encounters of semantically-related stimuli with an application to understanding cognitive impairment. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Villarreal, M., Vaday, S., & Lee, M.D. (in press). Categorization in environments that change when people learn. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
- Montgomery, L.E., & Lee, M.D. (in press). The wisdom of the crowd and framing effects in spatial knowledge. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. [pdf]
Reports
- Lee, M.D., & Vickers, D. (1998). Psychological approaches to data visualisation. Defence Science and Technology Organisation Research Report, DSTO-RR-0135. [link here]
- Lee, M.D. (1999). Algorithms for representing similarity data. Defence Science and Technology Organisation Research Report, DSTO-RR-0152. [link here]
- Dry, M., Lee, M.D., Vickers, D., & Huf, S. (2005). Psychological implications for submarine display design. Defence Science and Technology Organisation Technical Report, DSTO-TR-1766. [link here]
- Pooley, J.P., & Lee, M.D. (2012). A correction to the SIMPLE model of free recall. Institute for Mathematical and Behavioral Science, Technical Report MBS-12-04. [link here]
Other
- Lee, M.D. (2002). Book review of R. Decker and W. Gaul, Eds., Classification and Information Processing at the Turn of the Millenium. Journal of Classification, 19(1), 183-186.
- Obituary for Professor Douglas Vickers, The Advertiser, Saturday 18th December, 2004, p. 80.
- Obituary for Professor Douglas Vickers, The Adelaidean, Volume 13, Number 11, December 2004, p. 12. (with T. Nettelbeck)
- Storms, G., Navarro, D.J., & Lee, M.D. (2010). Introduction to the special issue on formal modeling of semantic concepts. Acta Psychologica, 133, 213-215. [pdf]
- Lee, M.D., Vi, J., & Danileiko, I. (2017), Testing the ability of the surprisingly popular algorithm to predict the 2017 NBA playoffs. Working paper. [pdf] [osf]
- Lee, M.D., Narens, L., & Wagenmakers, E.-J. (2018). In memorium: William H. Batchelder. [link] [pdf] [chess endgame study]
- Lee, M.D. (2018). In vivo: Multiple approaches to hierarchical modeling. In S. Farrell and S. Lewandowsky, Computational Modeling of Cognition and Behavior. Cambridge University Press. [pdf]